Deep Learning for Brain Encoding and Decoding

Subba Reddy Oota¹, Jashn Arora², Manish Gupta^{2,3}, Raju S. Bapi², Mariya Toneva^{4,5}

¹Inria Bordeaux, France; ²IIIT Hyderabad, India; ³Microsoft, India; ⁴Princeton Neuroscience Institute, USA; ⁵MPI for Software Systems, Germany

subba-reddy.oota@inria.fr, jashn.arora@research.iiit.ac.in, gmanish@microsoft.com, raju.bapi@iiit.ac.in, mtoneva@mpi-sws.org

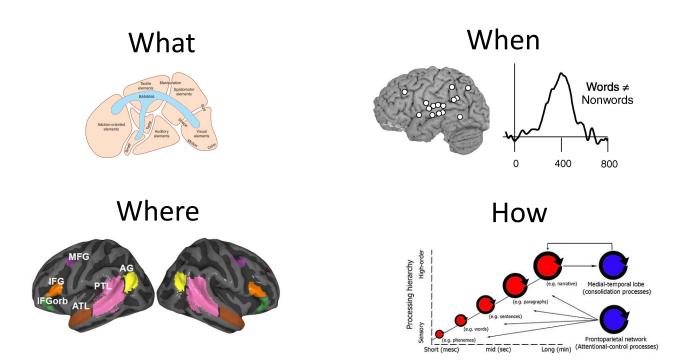
Agenda

- Introduction to Brain encoding and decoding [30 min]
- Stimulus Representations (Theory + Hands-on) [1 hour 30 min]
- Coffee break [15 min]
- Deep Learning for Brain Encoding (Theory + Hands-on) [1 hour 30 min]
- Lunch break [1 hour 15 min]
- Deep Learning for Brain Decoding (Theory + Hands-on) [1 hour 30 min]
- Coffee break [15 min]
- Advanced Methods [1 hour]
- Summary and Future Trends [15 min]

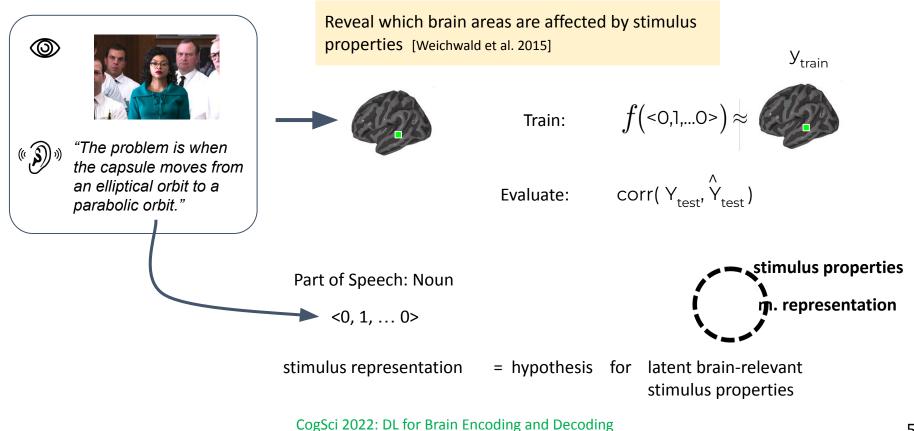
Agenda

- Introduction to Brain encoding and decoding [30 min]
- Stimulus Representations (Theory + Hands-on) [1 hour 30 min]
- Coffee break [15 min]
- Deep Learning for Brain Encoding (Theory + Hands-on) [1 hour 30 min]
 - Classic findings & common approaches
 - More recent findings utilizing deep learning
 - Hands-on with multi-modal fMRI data [40 min]
- Lunch break [1 hour 15 min]
- Deep Learning for Brain Decoding (Theory + Hands-on) [1 hour 30 min]
- Coffee break [15 min]
- Advanced Methods [1 hour]
- Summary and Future Trends [15 min]

Mechanistic understanding of information processing in the brain: 4 big questions



Encoding models have a causal interpretation



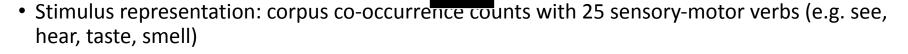
⁵

Classic findings using encoding models

- Using representations of stimuli not from deep learning
- Language:
 - Mitchell et al. 2008, Science
- Vision:
 - Kay et al. 2008, Nature
- Audio:
 - Santoro et al. 2014, PLoS Comp Bio

Classic encoding model finding: Language

• Stimuli: concrete nouns + line drawings



bear

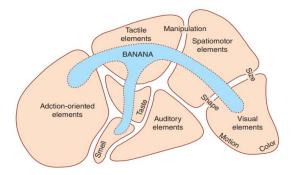


figure from Kemmerer, 2014; adapted from Thompson-Schill et al. 2006

[Barsalou, 1999; Barsalou, 2008; Pecher et al., 2005]

Empirical evidence for distributed organization for attributes related to:

- audition [Kiefer et al., 2008]
- color [Simmons et al., 2007]
- shape [Chao et al., 1999]
- motion [Damasio et al., 1996]
- olfaction and taste [Goldberg, Perfetti, et al., 2006a; Goldberg, Perfetti, et al., 2006b]

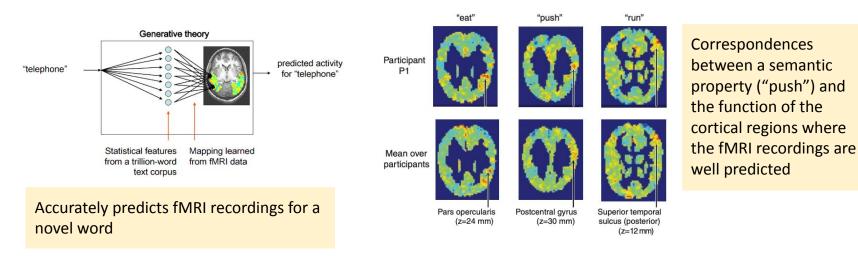
Mitchell, Tom M., Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L., Malave, Robert A. Mason, and Marcel Adam Just, "Predicting human brain activity associated with the meanings of nouns," science 320, no. 5880 (2008): 1191-1195

Classic encoding model finding: Language

- Stimuli: concrete nouns + line drawings
- Stimulus representation: corpus co-occurrence counts with 25 sensory-motor verbs (e.g. see, hear, taste, smell)

bear

• Brain recording: fMRI



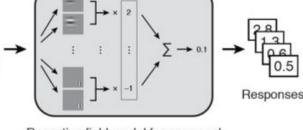
Classic encoding model finding: Vision

- Stimuli: natural images
- Stimulus representation: mixtures of Gabor wavelets
- Brain recording & modality: fMRI, viewing

Stage 1: Model estimation

Estimate a receptive field model for each voxel

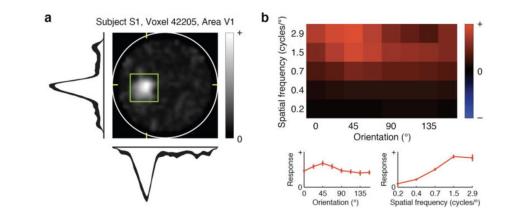
Images



Receptive field model for one voxel

Encoding models estimated quantitative receptive fields for V1-V3 voxels

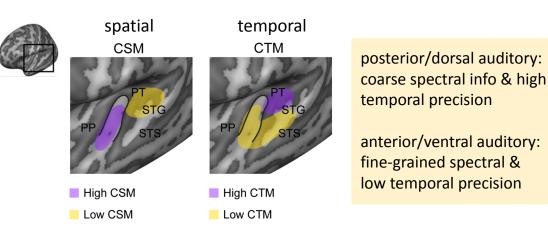
Identified which of a set of candidate natural image was viewed by a participant

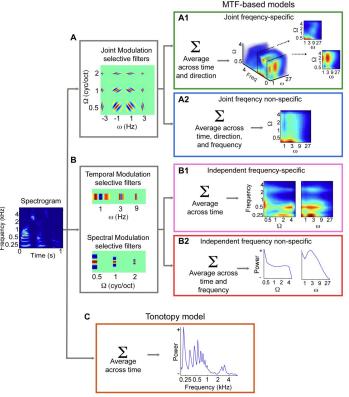


Kay. Kendrick N., Thomas Naselaris, Ryan J. Prenger, and Jack L. Gallant, "Identifying natural images from human brain activity." Nature 452, no. 7185 (2008); 352-355.

Classic encoding model finding: Audio

- Stimuli: natural sounds (speech, music, nature, tools)
- Stimulus representation: spectro-temporal filters that are selective for modulations along space and/or time
- Brain recording & modality: fMRI, listening





Santoro, Roberta, Michelle Moerel, Federico De Martino, Rainer Goebel, Kamil Ugurbil, Essa Yacoub, and Elia Formisano. "Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex." PLoS computational biology 10, no. (2014): e1003412.

Deep learning models enable data-driven encoding models for naturalistic stimuli

more naturalistic stimuli

more stimulus properties that affect brain activity

simple stim. representations explain less variance in brain activity

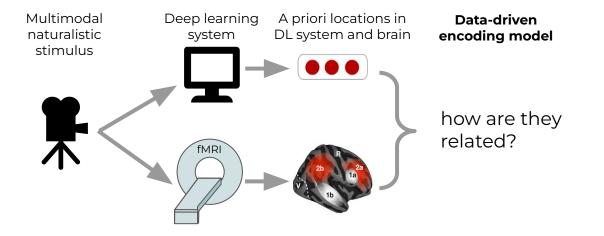
 $f(<0,1,...0>) \approx$

DeepMind's New AI Taught Itself to Be the World's Greatest Go Player Singularity Hub

Meet GPT-3. It Has Learned to Code (and Blog and Argue)

The New York Times

Data-driven encoding models evaluate the relationships between brains and deep learning models



Encoding: training and evaluation

function f often modeled as linear

[Mitchell et al. 2008, Nishimoto et al., 2011; Sudre et al., 2012; Wehbe et al., 2014]

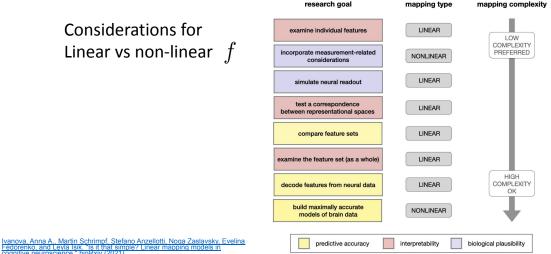
Traditional approach:

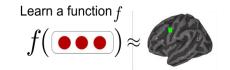
specify

Proposed approach:

estimate

Considerations for Linear vs non-linear f





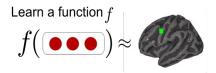
CogSci 2022: DL for Brain Encoding and Decoding

e neuroscience." bioRxiv (2021)

Encoding: training and evaluation

function f often modeled as linear

[Mitchell et al. 2008, Nishimoto et al., 2011; Sudre et al., 2012; Wehbe et al., 2014]

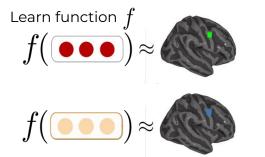


Training: cross validation (CV), regularization parameter chosen via nested CV

Evaluation: 1) make predictions for heldout data2) compare predictions with true brain data3) stringent statistical testing

Encoding: training setup

- Goal: find a mapping from stimulus
- Method:
 representation to brain data that
 Split dataset into train, validation, and test
 generalizes to new brain data



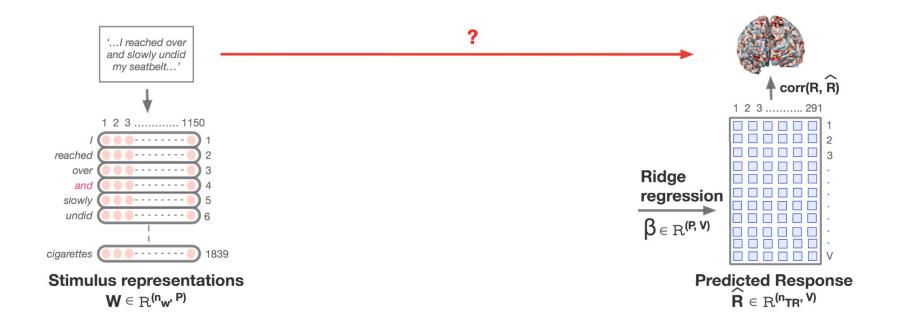
- Employ cross-validation to select model parameters based on validation dataset
- Reduce overfitting by using regularization
 - Ridge regularization

Encoding: training **independent** models

• Independent model per participant

• Independent model per voxel / sensor-timepoint

Encoding: fMRI specifics

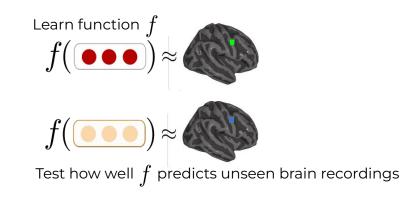


Jain. Shailee. W Vo. Shivanoi Mahto. Amanda LeBel. Javier S. Turek. and Alexander Huth. "Interpretable multi-timescale models for predicting fMRI responses to continuous natural speech." Advances in Neural Information Processing Systems 33 (2020): 13738-13749.

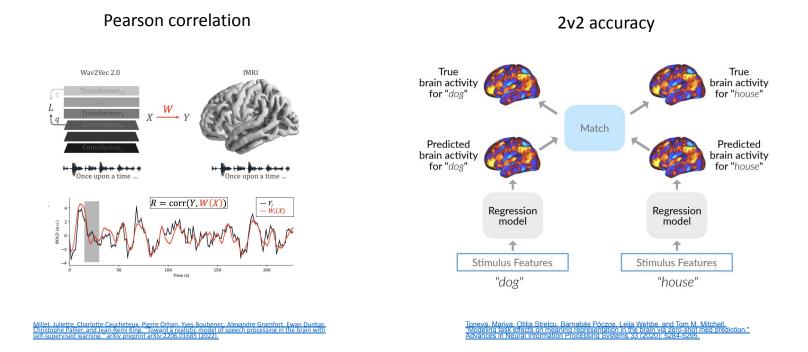
Encoding: evaluation setup

• Predict data heldout from training by applying learned function to corresponding stimulus representations

- Compare predictions of brain data to true brain data:
 - Evaluation metrics



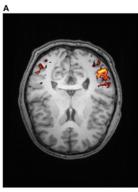
Encoding: evaluation metrics



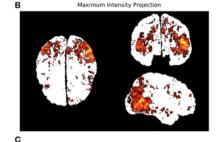
Encoding: statistical significance

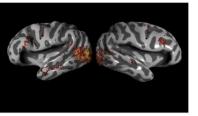
- Goal: determine whether the estimated similarity between the DL representations and the brain recordings is significant
- Simple method that makes no assumptions about underlying data:
 - Permutation test
 - Break input-to-output correspondence by permuting output labels
 - Estimate similarity
 - Repeat 1000s times to estimate null distribution
 - P-value = proportion of times the similarity metric from permuted labels >= sim. metric from original labels
 - Specifically for fMRI:
 - Permute labels in blocks to preserve the autoregressive structure
- Correct for multiple comparisons
 - FDR, FWER, etc.

Encoding: performance visualization



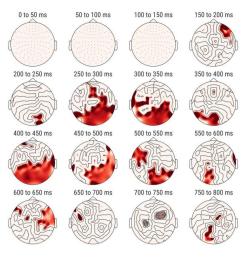
Single Slice





Inflated Surface

MEG/EEG



Gramfort, Alexandre, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian Brodbeck, Roman Goj et al. "MEG and EEG data analysis with MNE-Python." Frontiers in neuroscience (2013): 267.

Gao, James S., Alexander G. Huth, Mark D. Lescroart, and Jack L. Gallant. "Pycortex: an interactive surface visualizer for fMRI." Frontiers in neuroinformatics (2015): 23.

Agenda

- Introduction to Brain encoding and decoding [30 min]
- Stimulus Representations (Theory + Hands-on) [1 hour 30 min]
- Coffee break [15 min]
- Deep Learning for Brain Encoding (Theory + Hands-on) [1 hour 30 min]
 - Classic findings & common approaches
 - More recent findings utilizing deep learning
 - Hands-on with multi-modal fMRI data [40 min]
- Lunch break [1 hour 15 min]
- Deep Learning for Brain Decoding (Theory + Hands-on) [1 hour 30 min]
- Coffee break [15 min]
- Advanced Methods [1 hour]
- Summary and Future Trends [15 min]

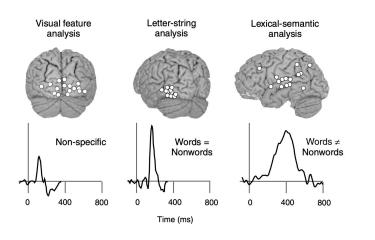
Recent work utilizing progress in DL for encoding

• Using representations of stimuli from deep learning systems

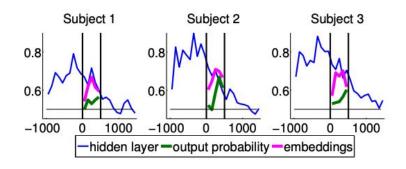
• Language:

- Wehbe et al. 2014; Jain and Huth, 2018; Toneva and Wehbe, 2019; Caucheteux and King, 2020/2022; Schrimpf et al. 2020/2021; Goldstein et al. 2021/2022
- Vision:
 - Yamins et al. 2014; Cichy et al. 2016; Konkle and Alvarez, 2020/2022; Zhuang et al. 2022
- Audio:
 - Kell et al. 2018; Vaidya, Jain, and Huth 2022; Millet et al. 2022

- Stimuli: one chapter of Harry Potter
- Stimulus representation: derived from an NLP system (RNN) trained on Harry Potter fan fiction
- Brain recording: MEG, reading



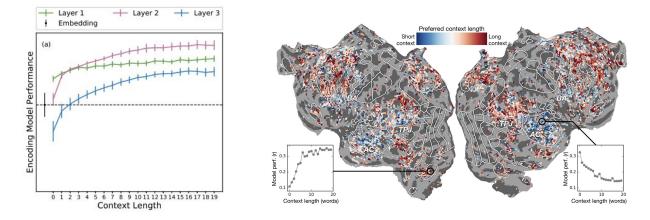
significant word-by-word alignment between MEG & representations of words and context from recurrent NLP systems



CogSci 2022: DL for Brain Encoding and Decoding

nd Tom Mitchell "Aligning context-based statistical models of language with brain activity during reading" In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) on 233-243 2014

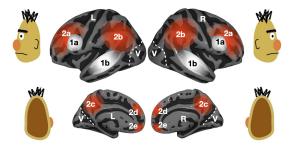
- Stimuli: Moth Radio Hour
- Stimulus representation: derived from **self-supervised text language model** trained to predict upcoming word in other radio stories
- Brain recording & modality: fMRI, listening

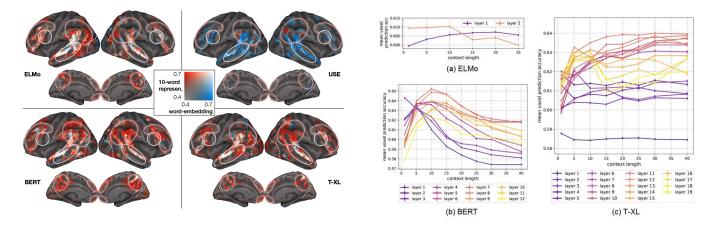


alignment between fMRI & recurrent NLP representations w/ varying context; best alignment with middle layer

Jain, Shailee, and Alexander Huth. "Incorporating context into language encoding models for fMRI," Advances in neural information processing systems 31 (2018).

- Stimuli: one chapter of Harry Potter
- Stimulus representation: derived from pretrained NLP systems
- Brain recording & modality: fMRI, reading





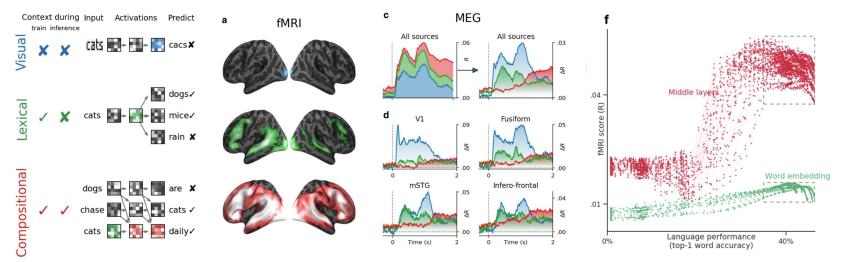
across several types of large NLP systems, best alignment with fMRI in middle layers

Toneva, M., & Wehbe, L. (2019). Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain). Advances in Neural Information Processing Systems, 32,

- Stimuli: sentences
- Stimulus representation: derived from pretrained NLP systems
- Brain recording & modality: MEG & fMRI, reading

best alignment with fMRI & MEG in middle layers

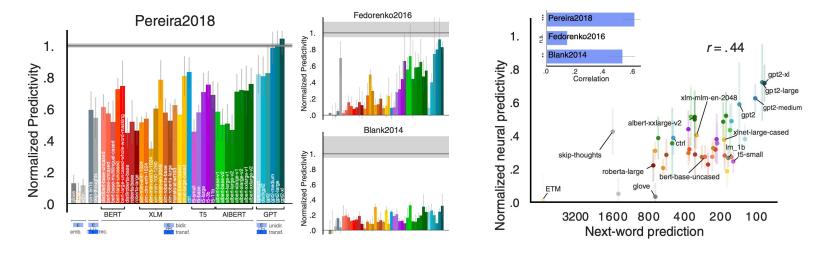
better performance at predicting next word -> better prediction of fMRI & MEg



Caucheteux, Charlotte, and Jean-Rémi King, "Brains and algorithms partially converge in natural language processing," Communications biology 5, no. 1 (2022): 1-10.

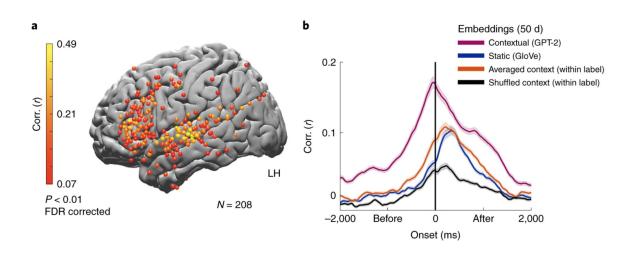
- Stimuli: sentences, passages, short story
- Stimulus representation: derived from pretrained NLP systems
- Brain recording & modality: fMRI & ECoG, reading & listening

some NLP systems can predict fMRI and ECoG up to 100% of estimated noise ceiling



Schrimpf, Martin, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A. Hosseini, Nancy Kanwisher, Joshua B. Tenenbaum, and Evelina Fedorenko. "The neural architecture of language: Integrative modeling converges on predictive processing." Proceedings of the National Academy of Sciences 118, no. 45 (2021): e2105646118.

- Stimuli: story
- Stimulus representation: derived from pretrained NLP systems
- Brain recording & modality: ECoG, listening



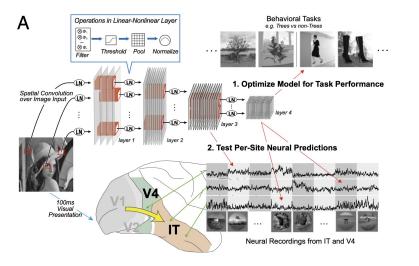
NLP word representations predict ECoG recordings for upcoming words

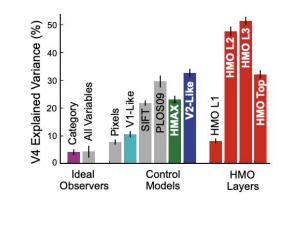
Ariel, Zaid Zada. Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A. Nastase et al. "Shared computational principles for language processing in humans and deep language models." Nature neuroscience 25. no. 3 (2022): 369-380

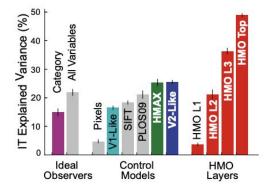
Recent work utilizing progress in DL for encoding

- Using representations of stimuli from deep learning systems
 - Data-driven
- Language:
 - Wehbe et al. 2014; Jain and Huth, 2018; Toneva and Wehbe, 2019; Caucheteux and King, 2020/2022; Schrimpf et al. 2020/2021; Goldstein et al. 2021/2022
- Vision:
 - Yamins et al. 2014; Cichy et al. 2016; Konkle and Alvarez, 2020/2022; Zhuang et al. 2022
- Audio:
 - Kell et al. 2018; Vaidya, Jain, and Huth 2022; Millet et al. 2022

- Stimuli: images of natural objects
- Stimulus representation: layers in pretrained CNNs
- Brain recording & modality: multiarray recordings in rhesus macaques, vision







Yamins, Daniel LK, Ha Hong, Charles F, Cadieu, Ethan A. Solomon, Darren Seibert, and James J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex." Proceedings of the national academy of sciences 111. no. 23 (2014): 8619-8624.

CogSci 2022: DL for Brain Encoding and Decoding

Highest layer in

predictive of IT;

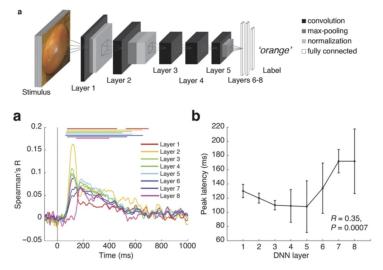
predictive of V4

intermediate

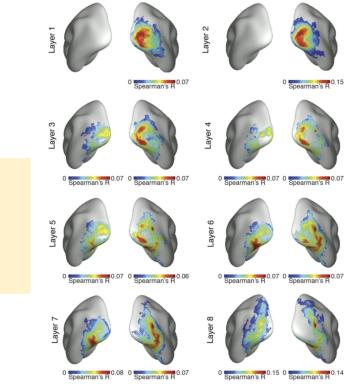
layers most

CNN model most

- Stimuli: images of natural objects
- Stimulus representation: layers of CNN tuned for object classification
- Brain recording: fMRI & MEG, vision

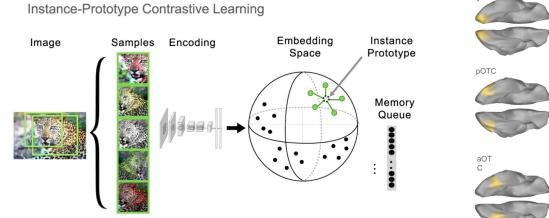


A CNN tuned for object classification captures stages of human visual processing in both space and time

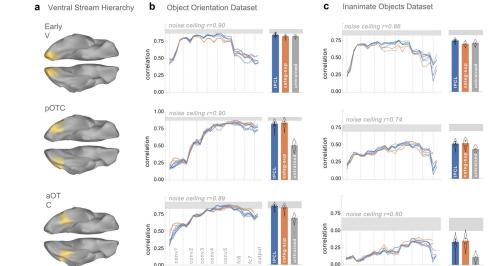


Cichy, Radoslaw Martin, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba, and Aude Oliva. "Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals netrarchical correspondence." Scientific reports 6. no. 1 (2016): 1-13.

- Stimuli: images of objects
- Stimulus representation: layers in self-supervised deep model
- Brain recording: fMRI, vision

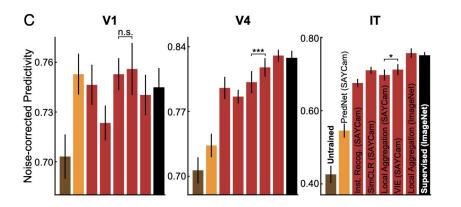


Self-supervised deep models achieve parity with category-supervised models in predicting fMRI responses along visual hierarchy

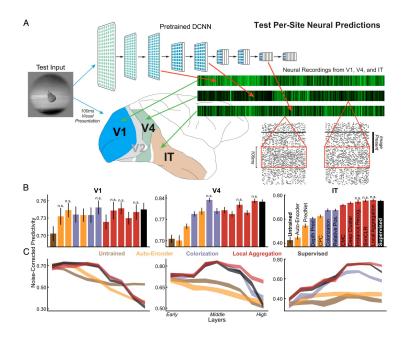


Konkle, Talia, and George A. Alvarez. "A self-supervised domain-general learning framework for human ventral stream representation." Nature communications 13, no. 1 (2022): 1-12.

- Stimuli: images of objects
- Stimulus representation: layers in self-supervised deep model
- Brain recording: multiarray recordings in rhesus macaques, vision



Self-supervised deep models produce brain-like representations even when trained solely with noisy data from child head-mounted cameras

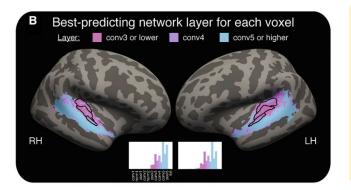


Zhuang, Chengxu, Siming Yan, Aran Navebi, Martin Schrimpf, Michael C. Frank, James J. DiCarlo, and Daniel LK Yamins. "Unsupervised neural network models of the ventral visual stream." Proceedings of the National Academy of Sciences 118, no. 3 (2021): e2014196118.

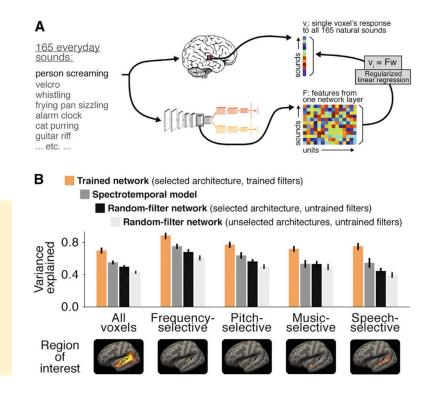
Recent work utilizing progress in DL for encoding

- Using representations of stimuli from deep learning systems
 - Data-driven
- Language:
 - Wehbe et al. 2014; Jain and Huth, 2018; Toneva and Wehbe, 2019; Caucheteux and King, 2020/2022; Schrimpf et al. 2020/2021; Goldstein et al. 2021/2022
- Vision:
 - Yamins et al. 2014; Cichy et al. 2016; Konkle and Alvarez, 2020/2022; Zhuang et al. 2022
- Audio:
 - Kell et al. 2018; Vaidya, Jain, and Huth 2022; Millet et al. 2022

- Stimuli: natural sounds
- Stimulus representation: deep model optimized for speech and music recognition
- Brain recording & modality: fMRI, listening

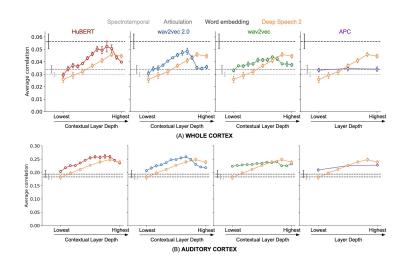


Primary auditory responses predicted best by intermediate layers of task-optimized model; non-primary responses predicted best by late layers

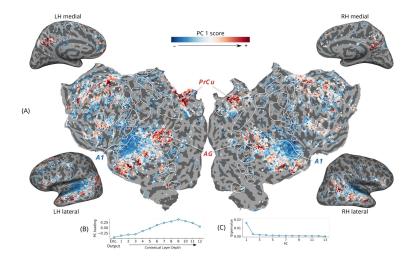


ell. Alexander JE. Daniel LK Yamins. Erica N. Shook. Sam V. Norman-Haignere. and Josh H. McDermott. "A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy." Neuron 98. no. 3 (2018): 630-644

- Stimuli: Moth Radio Hour
- Stimulus representation: derived from pretrained self-supervised speech models
- Middle layers of self-supervised speech models predict auditory cortex the best

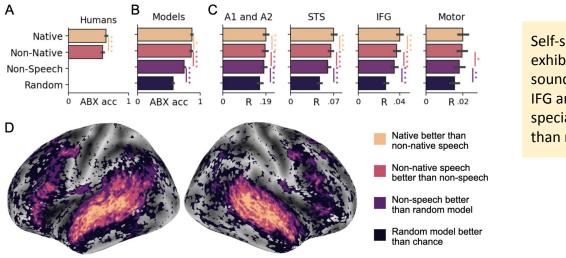


Brain recording & modality: fMRI, listening



Vaidva, Aditva R., Shailee Jain, and Alexander G. Huth, "Self-supervised models of audio effectively explain human cortical responses to speech." ICML (2022).

- Stimuli: audio books
- Stimulus representation: derived from pretrained self-supervised speech model
- Brain recording & modality: fMRI, listening in 3 languages (Eng, Fr, Mandarin)



Self-supervised speech models exhibit specialization for native sounds in the STS and MTG; IFG and AG show more general specialization for speech rather than native-language

Millet. Juliette, Charlotte Caucheteux, Pierre Orhan, Yves Boubenec, Alexandre Gramfort, Ewan Dunbar, Christophe Pallier, and Jean-Remi King, "Toward a realistic model of speech processing in the brain with self-supervised learning," arXiv preprint arXiv:2206.01685 (2022

Agenda

- Introduction to Brain encoding and decoding [30 min]
- Stimulus Representations (Theory + Hands-on) [1 hour 30 min]
- Coffee break [15 min]
- Deep Learning for Brain Encoding (Theory + Hands-on) [1 hour 30 min]
 - Classic findings & common approaches
 - More recent findings utilizing deep learning
 - Hands-on with multi-modal fMRI data [40 min]
- Lunch break [1 hour 15 min]
- Deep Learning for Brain Decoding (Theory + Hands-on) [1 hour 30 min]
- Coffee break [15 min]
- Advanced Methods [1 hour]
- Summary and Future Trends [15 min]