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Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 30 min]

• Deep Learning for Brain Encoding [1 hour 30 min]

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Neuroscience

• Field of science that studies the structure and function of the nervous system of 
different species.

• Involves answering interesting questions
• How learning occurs during adolescence, and how it differs from the way adults learn and form 

memories.
• Which specific cells in the brain (and what connections they form with other cells), have a role in 

how memories are formed. 
• How animals cancel out irrelevant information arriving from the senses and focus only on 

information that matters.
• How do humans make decisions.
• How humans develop speech and learn languages.  

• Neuroscientists study diverse topics that help us understand how the brain and 
nervous system work.
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•
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Ivanova, Anna A., Martin Schrimpf, Stefano Anzellotti, Noga Zaslavsky, Evelina Fedorenko, and Leyla Isik. "Is it that simple? Linear mapping models in cognitive neuroscience." bioRxiv (2021).

Brain encoding and decoding in cognitive neuroscience

https://www.biorxiv.org/content/10.1101/2021.04.02.438248v2.full.pdf
https://www.biorxiv.org/content/10.1101/2021.04.02.438248v2.full.pdf
https://www.biorxiv.org/content/10.1101/2021.04.02.438248v2.full.pdf


Brain encoding and decoding

•
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• fMRI: high spatial but low time resolution. 
• Good to study a specific location in the brain
• Unsuitable for sentence-level analysis. fMRI 

takes about two seconds to complete a scan. 
This is far lower than the speed at which 
humans can process language. 

• Cannot capture syntactic information (Gauthier 
and Levy, 2019)

• EEG: high time but low spatial resolution. 
• Can preserve rich syntactic information (Hale et 

al., 2018)
• But cannot use for source analysis. 

• fNIRS: compromise option
• Time resolution better than fMRI
• Spatial resolution better than EEG
• Balance of spatial and temporal resolution may 

not be enough to compensate for the loss in 
both.
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Vogel, Jörn, Sami Haddadin, Beata Jarosiewicz, John D. Simeral, Daniel Bacher, Leigh R. Hochberg, John P. Donoghue, and Patrick van der Smagt. "An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces." The International 
Journal of Robotics Research 34, no. 6 (2015): 763-780.

Techniques for studying the brain function

Single Micro-Electrode (ME), Micro-Electrode array (MEA), Electro-Cortico 
Graphy (ECoG), Positron emission tomography (PET), functional MRI 
(fMRI), Magneto-encephalography (MEG), Electro-encephalography (EEG), 
Near-Infrared Spectroscopy (NIRS)

https://mediatum.ub.tum.de/doc/1308160/file.pdf
https://mediatum.ub.tum.de/doc/1308160/file.pdf
https://mediatum.ub.tum.de/doc/1308160/file.pdf
https://mediatum.ub.tum.de/doc/1308160/file.pdf


fMRI

• No injections, surgery, the ingestion of substances, or 
exposure to ionizing radiation.

• The primary form of fMRI uses the blood-oxygen-level 
dependent (BOLD) contrast, discovered by Seiji Ogawa in 
1990.

• Measures brain activity by detecting changes associated with 
blood flow.

• When an area of the brain is in use, blood flow to that region 
also increases.

• Hemodynamic response (HRF)
• It takes a while for the vascular system to respond to the brain's 

need for glucose. 
• Blood flow lags the neuronal events triggering it by about 5 

seconds.
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An fMRI image with yellow areas 
showing increased activity 

compared with a control condition



Computational Cognitive Science Research goals

• Predictive Accuracy
• Compare feature sets: Which feature set provides the most 

faithful reflection of the neural representational space?
• Test feature decodability: “Does neural data Y contain 

information about features X?”
• Build accurate models of brain data: Aim is to enable 

simulations of neuroscience experiments. 

• Interpretability
• Examine individual features: Which features contribute the 

most to neural activity? 
• Test correspondences between representational spaces

• “CNNs vs ventral visual stream” or “Two text representations”
• Interpret feature sets

• Do features X, generated by a known process, accurately describe the 
space of neural responses Y?

• Do voxels respond to a single feature or exhibit mixed selectivity? 
• How does the mapping relate to other models or theories of 

brain function?
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Ivanova, Anna A., Martin Schrimpf, Stefano Anzellotti, Noga Zaslavsky, Evelina Fedorenko, and Leyla Isik. "Is it that simple? Linear mapping models in cognitive neuroscience." bioRxiv (2021).

https://www.biorxiv.org/content/biorxiv/early/2021/12/21/2021.04.02.438248.full.pdf
https://www.biorxiv.org/content/biorxiv/early/2021/12/21/2021.04.02.438248.full.pdf
https://www.biorxiv.org/content/biorxiv/early/2021/12/21/2021.04.02.438248.full.pdf


Computational Cognitive Science Research goals

• Biological plausibility
• Simulate linear readout

• If the features can be extracted with a linear mapping 
model, it means that they require few additional 
computations in order to be used downstream.

• Incorporate measurement-related considerations
• Rather than assuming a fixed HRF across voxels and/or 

conditions, what are better ways?
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Types of stimuli and popular datasets

• Text (Words, Sentences, Paragraphs): Harry Potter Story, ZUCO EEG, Question-
Answering MEG.

• Visual: Binary visual patterns, Natural Images (Vim-1), BOLD5000, Algonauts 
and SS-fMRI.

• Audio: Alice’s Adventures in Wonderland, Narratives, The Moth Radio Hour, 
Audio stories.

• Videos: BBC’s Doctor Who, Japanese Ads, Pippi Langkous, Algonauts. 

• Other Multimodal Stimuli: Words + line drawing of concept named by each 
word, Pereira.

IJCAI 2023: DL for Brain Encoding and Decoding 14



Forms of stimulus presentation and data collection

• Type: fMRI, EEG, MEG, …

• TR: Sampling time.

• Fixation points: location, color, shape.

• Form of stimuli presentation: text, video, audio, images.

• Task: question answering, property generation, understanding, …

• Time given to participants: 1 minute to list properties, …

• Type of participants: males/females, sighted/blind, …

• Number of times the response to stimuli was recorded.

• Language
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Text Stimulus Datasets 
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Dataset Type Language Stimulus #Subjects Paradigm Size Task

Wehbe et al., 2014 fMRI English Chapter 9 of Harry Potter 
and the Sorcerer's Stone

9 Reading stories 5000 word chapter 
was presented in 45 
minutes.

Story understanding

Handjaras et al., 2016 fMRI Italian Verbal, pictorial or 

auditory presentation of 

40 concrete nouns

20 Reading, viewing 
or listening

40 nouns * 4 times. Property Generation

Anderson et al., 2017 fMRI Italian 70 concrete and abstract 
nouns from law/music.

7 Reading 70 nouns * 5 times. Imagine a situation 
that they personally 
associate with the 
noun

Zurich Cognitive 

Language Processing 

Corpus (ZuCo):  
Hollenstein et al., 2018

EEG and 
eye-tracking

English Sentences from movie 
reviews or Wikipedia

12 Reading natural 

sentences

21,629 words in 

1107 sentences and 

154,173 fixations

Rate movie quality, 
answer control 
questions, check for 
existence of a relation

Anderson et al., 2019 fMRI English 240 active voice sentences 
describing everyday 
situations

14 Reading 240 sentences seen 
12 times (by 10 
subjects) and 6 times 
(by 4 subjects)

Passive reading

BCCWJ-EEG: Oseki and 
Asahara, 2020

EEG Japanese 20 newspaper articles 40 Reading 1 time reading for 
~30-40 minutes

Passive reading

Deniz et al., 2019 fMRI English Subset of Moth Radio Hour. 
11 stories

9 Reading 11 10- to 15 min 
stories presented 
twice word by word

Passive reading and 
Listening



Data for concrete nouns from sighted/blind subjects

• Participants were asked to verbally 
enumerate in one minute the 
properties (features) that describe 
the entities the words refer to.

• 4 groups of participants 
• 5 sighted individuals were presented 

with a pictorial form of the nouns

• 5 sighted individuals with a verbal visual 
(i.e., written Italian words) form

• 5 sighted individuals with a verbal 
auditory (i.e., spoken Italian words) form

• 5 congenitally blind with a verbal 
auditory form.
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Handjaras, Giacomo, Emiliano Ricciardi, Andrea Leo, Alessandro Lenci, Luca Cecchetti, Mirco Cosottini, Giovanna Marotta, and Pietro Pietrini. "How concepts are encoded in the human brain: a modality independent, category-based cortical organization of semantic knowledge." Neuroimage 135 
(2016): 232-242.

https://www.sciencedirect.com/science/article/pii/S1053811916301021
https://www.sciencedirect.com/science/article/pii/S1053811916301021
https://www.sciencedirect.com/science/article/pii/S1053811916301021
https://www.sciencedirect.com/science/article/pii/S1053811916301021


• Taxonomic categories in law and music domain
• Ur-abstract: that are classified as abstract in 

WordNet 
• Attribute: A construct whereby objects or 

individuals can be distinguished
• Communication: Something that is communicated 

by, to or between groups
• Event/action: Something that happens at a given 

place and time
• Person/Social role: Individual, someone, somebody, 

mortal
• Location: Points or extents in space
• Object/Tool: A class of unambiguously concrete 

nouns
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Anderson, Andrew J., Douwe Kiela, Stephen Clark, and Massimo Poesio. "Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns." Transactions of the Association for Computational Linguistics 5 (2017): 17-30.

70 - Italian word stimuli fMRI data

https://aclanthology.org/Q17-1002.pdf
https://aclanthology.org/Q17-1002.pdf
https://aclanthology.org/Q17-1002.pdf


Zurich Cognitive Language Processing 
Corpus (ZuCo)

• Personal reading speed. 
• Sentences were presented to the subjects in a naturalistic reading scenario

• Complete sentence is presented on the screen 

• Subjects read each sentence at their own speed, i.e., the reader determines for 
how long each word is fixated and which word to fixate next.
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Hollenstein, Nora, Jonathan Rotsztejn, Marius Troendle, Andreas Pedroni, Ce Zhang, and Nicolas Langer. "ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading." Scientific data 5, no. 1 (2018): 1-13.

https://www.nature.com/articles/sdata2018291
https://www.nature.com/articles/sdata2018291
https://www.nature.com/articles/sdata2018291


Visual Stimulus Datasets 
Dataset Type Stimulus #S Paradigm Size Task

Thirion et al., 2006 fMRI Rotating wedges, 
expanding/contracting 
rings, rotating Gabor 
filters, grid

9 Viewing visual 
patterns

Wedges/rings for 8 times, 36 Gabor filters for 
4 times, grid 36 times

Passive viewing, 
imagine one of the 6 
domino stimuli when 
prompted to.

Vim-1: Kay et al., 2008 fMRI Sequences of natural 
photos

2 Viewing natural 
images

Each subject viewed 1750 (Stage 1)+ 120 
(Stage 2) novel natural images

Passive viewing

Horikawa et al., 2017 fMRI Object images 5 Viewing and 
Reading

Each subject: (1) Image presentation: 1,200 
images from 150 object categories and 50 
images from 50 object categories; (2) 
Imagery: 10 times.

One-back repetition 
detection task, 
imagine object images 
pertaining to the 
category

BOLD5000: Chang et al., 
2019

fMRI 5254 images depicting 
real-world scenes

4 Viewing natural 
images

∼20 hours of MRI scans per each of four 
participants

Passive viewing

Algonauts: Cichy et al., 
2019

fMRI (EVC and 
IT)/MEG (early and 
late in time)

Object images 15 Viewing object 
images

92 silhouette object images and 118 images 
of objects on natural background

Passive viewing

Natural Scenes Dataset: 
Allen et al., 2022

fMRI 73000 natural scenes 8 Viewing natural 
scenes

~73000 distinct natural scene images from 
MSCOCO.

Passive viewing

THINGS: Hebart et al., 
2023

fMRI/EEG 31188 natural images 
across 1,854 object 
concepts.

8 Viewing natural 
images

fMRI: 3 Participants. 8,740 unique images. 
720 objects. MEG: 4 Participants. 22,448 
unique images. 1,854 objects

oddball detection task 
(synthetic image).
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a) Retinotopic mapping experiment: 
flickering rotating wedges and 
expanding/contracting rings. 

b) Domino experiment: groups of 
quickly rotating Gabor filters in an 
event-related design. Disks appeared 
simultaneously on the left and right 
side of the visual field. 

c) 6 different patterns in each hemifield. 
d) Subject was presented with the same 

grid. When the central fixation cross 
(left) became a left arrow (middle) or 
a right arrow (right), the subject had 
to imagine one of the 6 patterns 
presented previously, either in the 
left or right hemifield.
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Thirion, Bertrand, Edouard Duchesnay, Edward Hubbard, Jessica Dubois, Jean-Baptiste Poline, Denis Lebihan, and Stanislas Dehaene. "Inverse retinotopy: inferring the visual content of images from brain activation patterns." Neuroimage 33, no. 4 (2006): 1104-1116.

Visual Binary Patterns

https://www.unicog.org/publications/ThirionDehaene_InverseRetinotopy_Neuroimage2006.pdf
https://www.unicog.org/publications/ThirionDehaene_InverseRetinotopy_Neuroimage2006.pdf
https://www.unicog.org/publications/ThirionDehaene_InverseRetinotopy_Neuroimage2006.pdf


• Two fMRI experiments: An image 
presentation experiment, and an imagery 
experiment. 

• Image presentation experiment
• Subjects performed a one-back repetition 

detection task on the images, responding with 
a button press for each repetition.

• Imagery experiment
• Cue stimuli composed of an array of object 

names were visually presented.
• The onset and the end of the imagery periods 

were signalled by auditory beeps. 
• After the first beep, the subjects were 

instructed to imagine as many object images 
as possible pertaining to the category 
indicated by red letters. 

• They continued imagining with their eyes 
closed (15 s) until the second beep. 

• Subjects were then instructed to evaluate the 
vividness of their mental imagery (3 s).
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Horikawa, Tomoyasu, and Yukiyasu Kamitani. "Generic decoding of seen and imagined objects using hierarchical visual features." Nature communications 8, no. 1 (2017): 1-15.

Seen and imagined objects

https://www.nature.com/articles/ncomms15037?origin=ppub
https://www.nature.com/articles/ncomms15037?origin=ppub
https://www.nature.com/articles/ncomms15037?origin=ppub


BOLD5000

• ∼20 hours of MRI scans per each of the four participants.

• 4,916 unique images were used as stimuli from 3 image sources
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Chang, Nadine, John A. Pyles, Austin Marcus, Abhinav Gupta, Michael J. Tarr, and Elissa M. Aminoff. "BOLD5000, a public fMRI dataset while viewing 5000 visual images." Scientific data 6, no. 1 (2019): 1-18.

https://www.nature.com/articles/s41597-019-0052-3
https://www.nature.com/articles/s41597-019-0052-3
https://www.nature.com/articles/s41597-019-0052-3


Algonauts
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Cichy, Radoslaw Martin, Gemma Roig, Alex Andonian, Kshitij Dwivedi, Benjamin Lahner, Alex Lascelles, Yalda Mohsenzadeh, Kandan Ramakrishnan, and Aude Oliva. "The algonauts project: A platform for communication between the sciences of biological and artificial intelligence." arXiv preprint 
arXiv:1905.05675 (2019).

Training and Testing Material. 
a) There are two sets of training data, each consisting of an image set and brain activity in RDM 

format (for fMRI and MEG). Training set 1 has 92 silhouette object images, and training set 2 has 
118 object images with natural backgrounds. 

b) Testing data consists of 78 images of objects on natural backgrounds. 

https://arxiv.org/pdf/1905.05675.pdf
https://arxiv.org/pdf/1905.05675.pdf
https://arxiv.org/pdf/1905.05675.pdf
https://arxiv.org/pdf/1905.05675.pdf


Audio Stimulus Datasets 
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Dataset Type Languag
e

Stimulus #S Paradigm Size Task

Handjaras et al., 
2016

fMRI Italian Verbal, pictorial or auditory 
presentation of 40 concrete 
nouns

20 Reading, 
viewing or 
listening

40 nouns * 4 times. Property Generation

Huth et al., 2016 fMRI English Eleven 10-minute stories 7 Listening 2 hours of stories from The Moth Radio 
Hour

Passive Listening

Brennan and Hale, 
2019

EEG English Chapter one of Alice’s 
Adventures in Wonderland as 
read by Kristen McQuillan

33 Listening 2,129 words in 84 sentences. The entire 
experimental session lasted 1–1.5 h 
(including QA).

8 MCQ Question 
answering concerning the 
contents of the story

Anderson et al., 
2020

fMRI English One of 20 scenario names 26 Listening 
scenario 
name

20 scenario prompts displayed 5 times. Imagine themselves 
personally experiencing  
common scenarios

Narratives: Nastase 
et al., 2021

fMRI English 27 diverse naturalistic spoken 
stories

345 Listening 891 functional scans, totaling ~4.6 hours 
of unique stimuli (~43,000 words)

Passive Listening

Natural Stories: 
Zhang et al., 2020

fMRI English Moth-Radio-Hour naturalistic 
spoken stories

19 Listening 5 h 33 m (repeated twice). Each story is 
6 m 48 s avg or 2492 words.

Passive Listening

The Little Prince: Li 
et al., 2021

fMRI English, 
Chinese, 
French

Audiobook 112 Listening English audiobook is 94 minutes long. 
Chinese: 99min. French: 97 min.

Passive Listening. 4 quiz 
questions.

MEG-MASC: 
Gwilliams et al., 
2022

MEG English 4 English fictional stories: Cable 
spool boy, LW1, Black willow, 
Easy money. 

27 Listening Two hours of naturalistic stories. 208 
MEG sensors.

Passive Listening



Imagining common scenarios

• Participants underwent fMRI as they reimagined the scenarios when prompted by standardized cues.

• 20 Scenarios: resting, reading, writing, bathing, cooking, housework, exercising, internet, telephoning, 
driving, shopping, movie, museum, restaurant, barbecue, party, dancing, wedding, funeral, festival.

• 20 attributes: bright, color, motion, touch, audition, music, speech, taste, head, upperlimb, lowerlimb, 
body, path, landmark, time, social, communication, cognition, pleasant, unpleasant.
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Anderson, Andrew James, Kelsey McDermott, Brian Rooks, Kathi L. Heffner, David Dodell-Feder, and Feng V. Lin. "Decoding individual identity from brain activity elicited in imagining common experiences." Nature communications 11, no. 1 (2020): 1-14.

https://www.nature.com/articles/s41467-020-19630-y
https://www.nature.com/articles/s41467-020-19630-y
https://www.nature.com/articles/s41467-020-19630-y
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Nastase, Samuel A., Yun-Fei Liu, Hanna Hillman, Asieh Zadbood, Liat Hasenfratz, Neggin Keshavarzian, Janice Chen et al. "The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension." Scientific data 8, no. 1 (2021): 1-22.

Narratives

https://www.nature.com/articles/s41597-021-01033-3?
https://www.nature.com/articles/s41597-021-01033-3?
https://www.nature.com/articles/s41597-021-01033-3?


Video Stimulus Datasets 
Dataset Type Language Stimulus #Subjects Paradigm Size Task

BBC’s Doctor Who: 
Seeliger et al., 2019

fMRI English Spatiotemporal visual 
and auditory naturalistic 
stimuli (30 episodes of 
BBC’s Doctor Who)

1 Viewing episode 
videos

120.830 whole-brain volumes 
(approx. 23 h) of single-
presentation data, and 1.178 
volumes (11 min) of repeated 
narrative short episodes (22 
repetitions)

Passive 
viewing

Japanese Ads: Nishida 
et al., 2020

fMRI Japanese 368 web and 2452 TV 
Japanese ad movies (15-
30s)

40 and 28 for 
web and TV 
ads. 16 were 
overlapped

Viewing Ads 7200 train and 1200 test fMRIs for 
web; fMRIs from 420 ads.

Passive 
viewing

Pippi Langkous: 
Berezutskaya et al., 
2020

ECoG The movie was 
originally in 
Swedish but 
dubbed in Dutch

30 s excerpts of a feature 
film (in total, 6.5 min 
long), edited together for 
a coherent story

37 patients Viewing 6.5 min movie. Passive 
viewing

Algonauts: Cichy et al., 
2021

fMRI English 1000 short video clips 10 Viewing video 
clips

1000 short video clips (3 sec each) Passive 
viewing

Natural Short Clips: 
Huth et al., 2022

fMRI English Natural short movie clips 5 Watching natural 
short movie clips

3870 responses per subject. Passive 
viewing
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Japanese Ads

• Two sets of movies were provided by NTT DATA 
Corp: web and TV ads.

• Four types of cognitive labels associated with the 
movie datasets

• Scene descriptions
• Human judges create scene descriptions with 50+ words per 1s 

scene. 
• Impression ratings

• Human rating on 30 factors for every 2s clip on a scale of 0-4.
• Ad effectiveness indices

• Click rate: fraction of viewers who clicked the frame of a movie 
and jumped to a linked web page

• View completion rate: fraction of viewers who continued to 
watch an ad movie until the end without choosing a skip 
option.

• Ad preference votes
• Each tester was asked to freely recall a small number of 

favorite TV ads from among the ads recently broadcasted. 
• The total number of recalls of an ad was regarded as its 

preference value.
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Nishida, Satoshi, Yusuke Nakano, Antoine Blanc, Naoya Maeda, Masataka Kado, and Shinji Nishimoto. "Brain-mediated transfer learning of convolutional neural networks." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 5281-5288. 2020.

https://arxiv.org/pdf/1905.10037.pdf
https://arxiv.org/pdf/1905.10037.pdf
https://arxiv.org/pdf/1905.10037.pdf


• fMRI from 10 human subjects that watched over 1,000 short (3 sec) video clips.
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Cichy, Radoslaw Martin, Kshitij Dwivedi, Benjamin Lahner, Alex Lascelles, Polina Iamshchinina, M. Graumann, A. Andonian et al. "The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion." arXiv preprint arXiv:2104.13714 (2021).

Algonauts 2021

https://arxiv.org/ftp/arxiv/papers/2104/2104.13714.pdf
https://arxiv.org/ftp/arxiv/papers/2104/2104.13714.pdf
https://arxiv.org/ftp/arxiv/papers/2104/2104.13714.pdf


Other Multimodal Stimulus Datasets 
Dataset Type Language Stimulus #Subjects Paradigm Size Task

Mitchell et al., 2008 fMRI English 60 different word-
picture pairs from 12 
categories.

9 Viewing word-picture 
pairs

60 different word-
picture pairs presented 
six times each

Passive viewing

Sudre et al., 2012 MEG English 60 concrete nouns 
along with line 
drawings

9 Reading 60 stimuli × 20 
questions = 1200 
examples

Question answering

Zinszer et al., 2017 fNIRS English 8 concrete nouns 
(audiovisual word and 
picture stimuli): bunny, 
bear, kitty, dog, mouth, 
foot, hand, and nose

24 Viewing and listening 12 blocks with the 8 
stimuli per subject.

Passive viewing and 
listening

Pereira et al., 2018 fMRI English 180 Words with 
Picture, Sentences, 
word clouds; 96 text 
passages; 72 passages

16 Viewing WP, sentences 
or word clouds

180 WP, S and WC per 
subject; 96+72 
passages shown 3 
times

Passive viewing

Cao et al., 2021 fNIRS Chinese 50 concrete nouns 
from 10 semantic 
categories

7 Viewing and listening Each stimulus is 
presented 7 times.

Passive viewing and 
listening

Courtois Neuromod fMRI full-length 
movies and 
TV show

6 Viewing and 
Listening

~100 hours of data per 
participant

Passive viewing
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• Subjects were asked to perform a QA 
task, while their brain activity was 
recorded using MEG.

• Subjects were first presented with a 
question (e.g., “Is it manmade?”), 
followed by 60 concrete nouns, along 
with their line drawings, in a random 
order. 

• Each stimulus was presented until 
the subject pressed a button to 
respond “yes” or “no” to the initial 
question. 

• Once all 60 stimuli are presented, a 
new question is shown for a total of 
20 questions.

IJCAI 2023: DL for Brain Encoding and Decoding 32

Sudre, Gustavo, Dean Pomerleau, Mark Palatucci, Leila Wehbe, Alona Fyshe, Riitta Salmelin, and Tom Mitchell. "Tracking neural coding of perceptual and semantic features of concrete nouns." NeuroImage 62, no. 1 (2012): 451-463.

Concrete nouns with line drawings

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465409/


• Experiment 1: 180 words (128 nouns, 22 verbs, 29 adjectives and adverbs, and 
1 function word). 3 paradigms.

• Experiment 2: 96 text passages, each with 4 sentences from 24 broad topics 
(e.g., professions, clothing, birds, musical instruments, natural disasters, 
crimes, etc.)

• Experiment 3: 72 passages, each with 3-4 sentences from another 24 topics.
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Pereira, Francisco, Bin Lou, Brianna Pritchett, Samuel Ritter, Samuel J. Gershman, Nancy Kanwisher, Matthew Botvinick, and Evelina Fedorenko. "Toward a universal decoder of linguistic meaning from brain activation." Nature communications 9, no. 1 (2018): 1-13.

Word+Picture, Sentences, Word Clouds, Passages

https://www.nature.com/articles/s41467-018-03068-4
https://www.nature.com/articles/s41467-018-03068-4
https://www.nature.com/articles/s41467-018-03068-4


• Stimuli are pictures and audios of 50 
objects from 10 categories.

• Visual presentation lasts for 3s, with 
audio presented immediately at the 
onset, followed by a 10s rest period. 

• During rest period, participants are 
instructed to fixate on an X displayed 
in the center of the screen.
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Cao, Lu, Dandan Huang, Yue Zhang, Xiaowei Jiang, and Yanan Chen. "Brain decoding using fnirs." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 14, pp. 12602-12611. 2021.

fNIRS with audio-visual stimuli

https://ojs.aaai.org/index.php/AAAI/article/view/17493


Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 30 min]

• Deep Learning for Brain Encoding [1 hour 30 min]

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Agenda

• Introduction to Brain encoding and decoding [30 min]
• Stimulus Representations [1 hour]

• Text Stimulus Representations
• Visual Stimulus Representations
• Audio Stimulus Representations
• Multimodal Stimulus Representations

• Coffee break [30 min]
• Deep Learning for Brain Decoding [1 hour 30 min]
• Lunch break [1 hour 30 min]
• Deep Learning for Brain Encoding [1 hour 30 min]
• Coffee break [30 min]
• Advanced Methods [1 hour 15 min]
• Summary and Future Trends [15 min]
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Stimulus Representations

• Text Stimuli
• Basic NLP Representations: Corpus co-occurrence counts, topic models, Linguistic (POS, 

dependencies, roles)
• Discourse features.
• Semantic: word embedding methods, sentence representation models, recurrent neural 

networks and Transformer methods.
• Experiential attributes: Rated on 0-6 scale or binary.

• Visual Stimuli
• Visual field filter banks
• Gabor wavelet pyramid
• HMAX model
• Convolutional neural networks

• Audio Stimuli
• Phoneme rate and presence of phonemes.

• Multimodal Stimuli
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Agenda

• Introduction to Brain encoding and decoding [30 min]
• Stimulus Representations [1 hour]

• Text Stimulus Representations
• Visual Stimulus Representations
• Audio Stimulus Representations
• Multimodal Stimulus Representations

• Coffee break [30 min]
• Deep Learning for Brain Decoding [1 hour 30 min]
• Lunch break [1 hour 30 min]
• Deep Learning for Brain Encoding [1 hour 30 min]
• Coffee break [30 min]
• Advanced Methods [1 hour 15 min]
• Summary and Future Trends [15 min]
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Text Stimulus Representations

• Basic NLP Representations
• Corpus co-occurrence counts
• Topic models
• Linguistic: POS, dependencies, roles.

• Discourse
• Characters, motion, speech, emotions, non-motion verbs

• Deep Learning based Representations
• Embeddings
• Longer context using LSTMs
• Transformers

• Experiential attributes
• Rated on 0-6 scale
• Binary
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• Corpus co-occurrence counts
• 25 verbs (Mitchell et al., 2008; Pereira et 

al., 2013)
• Verbs: see, hear, listen, taste, smell, eat, 

touch, nib, lift, manipulate, run, push, fill, 
move, ride, say, fear, open, approach, near, 
enter, drive, wear, break, and clean. 

• These verbs generally correspond to basic 
sensory and motor activities, actions per 
formed on objects, and actions involving 
changes to spatial relationships. 

• For each (verb, stimulus word w), feature 
value = normalized co-occurrence count of w 
with any of three forms of the verb (e.g., 
taste, tastes, or tasted) over the text corpus.

• 985 common English words (such as above, 
worry, and mother) in (Huth et al., 2016).
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• Topic models (Pereira et al., 2013)
• Get relevant Wiki pages (e.g., 

“airplane” is “Fixed-Wing Aircraft”) and 
other linked pages (e.g. “Aircraft 
cabin”)

• LDA topic modelling on 3500 pages 
with #topics from 10 to 100, in 
increments of 5, setting the α 
parameter to 25/#topics.

• LSA topic modelling (Wang et al., 2017)

Basic NLP Representations for Word Stimuli



Basic NLP Representations for Word Stimuli

• Word length

• Is the word related to one of the 28 unique parts of speech and 17 unique 
dependency relationships?

• Position of word in the sentence

• Roles
• Main verb
• Agent or experiencer
• Patient or recipient
• Predicate of a sentence (The window was dusty)
• Modifier (The angry activist broke the chair)
• Complement in adjunct and propositional phrase, including direction, location, and time 

(The restaurant was loud at night).
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Wehbe, Leila, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas, and Tom Mitchell. "Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses." PloS one 9, no. 11 (2014): e112575.

Wang, Jing, Vladimir L. Cherkassky, and Marcel Adam Just. "Predicting the brain activation pattern associated with the propositional content of a sentence: modeling neural representations of events and states." Human brain mapping 38, no. 10 (2017): 4865-4881.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112575
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112575
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112575
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf


Discourse features (for Harry Potter dataset)

• Characters: Resolve all pronouns to the character to whom they refer, and 
make binary features to signal which of the 10 characters are mentioned. 

• Motions: Identify a set of motions that occurred frequently in the chapter (e.g. 
fly, manipulate, collide physically, etc.). 

• Speech: Indicate the parts of the story that correspond to direct speech 
between the characters. Used the presence of dialog as a feature.

• Emotions: Identified a set of emotions that were felt by the characters in the 
chapter (e.g. annoyance, nervousness, pride, etc.). 

• Verbs: Identified a set of actions that occurred frequently in the chapter that 
were distinct from motion (e.g. hear, know, see, etc.).
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Wehbe, Leila, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas, and Tom Mitchell. "Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses." PloS one 9, no. 11 (2014): e112575.

Wang, Jing, Vladimir L. Cherkassky, and Marcel Adam Just. "Predicting the brain activation pattern associated with the propositional content of a sentence: modeling neural representations of events and states." Human brain mapping 38, no. 10 (2017): 4865-4881.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112575
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112575
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112575
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf


DL Representations: Using embeddings for word stimuli

• GloVe 300D vectors (Pereira et al., 2016; Wang et al., 2017; Pereira et al., 2018; Anderson et al., 
2019)

• 1000D Non-negative sparse embeddings (Wehbe et al., 2014).

• 300D embeddings by training a skip-gram model using negative sampling (SGNS) on Italian and 
English Wikipedia dumps using Gensim. (Anderson et al., 2017a)

• FastText (Berezutskaya et al., 2020)

• Comparison across multiple embedding methods
• GloVe, word2vec, WordNet2Vec, FastText, ELMo (Hollenstein et al., 2019)
• word2Vec, fastText, GloVe, Dependency-based word2vec, RWSGwn, ConceptNet, ELMo, averaged and 

concatenated combinations (Wang et al., 2020)
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• Multi-task LSTMs
• Predict next word and POS of next 

word.
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Toneva, Mariya, and Leila Wehbe. "Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain)." Advances in Neural Information Processing Systems 32 (2019).

Jain, Shailee, and Alexander Huth. "Incorporating context into language encoding models for fMRI." Advances in neural information processing systems 31 (2018).

Jat, Sharmistha, Hao Tang, Partha Talukdar, and Tom Mitchell. "Relating simple sentence representations in deep neural networks and the brain." arXiv preprint arXiv:1906.11861 (2019).

• ELMo embeddings: LSTM based 
pretrained language model

DL Representations: Using longer context for word stimuli

https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://arxiv.org/pdf/1906.11861.pdf
https://arxiv.org/pdf/1906.11861.pdf
https://arxiv.org/pdf/1906.11861.pdf


• Unstructured Models: Ignore sentence 
structure

• Simple Pooling Methods
• Average/max/concat(max, avg) pooling over word 

embeddings.
• Advanced Pooling Methods

• FastSent (Hill, Cho, and Korhonen 2016) sums 
word embeddings in a sentence as its 
representation to predict the surrounding 
sentences. 

• SIF (Arora, Liang, and Ma 2016) adapts the naïve 
averaging of word embeddings to weighted 
averaging.

• Structured Models
• Unsupervised Methods: Skip-thought, 

QuickThought. 
• Supervised Methods: InferSent, GenSen 

(Subramanian et al. 2018), Universal Sentence 
Encoder
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Toneva, Mariya, and Leila Wehbe. "Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain)." Advances in Neural Information Processing Systems 32 (2019).

Sun, Jingyuan, Shaonan Wang, Jiajun Zhang, and Chengqing Zong. "Towards sentence-level brain decoding with distributed representations." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 7047-7054. 2019.

DL Representations: Using sentence embeddings

https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2019/2019-SunJingyuan-AAAI.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2019/2019-SunJingyuan-AAAI.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2019/2019-SunJingyuan-AAAI.pdf
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Toneva, Mariya, and Leila Wehbe. "Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain)." Advances in Neural Information Processing Systems 32 (2019).

Sun, Jingyuan, Shaonan Wang, Jiajun Zhang, and Chengqing Zong. "Neural encoding and decoding with distributed sentence representations." IEEE Transactions on Neural Networks and Learning Systems 32, no. 2 (2020): 589-603.

DL Representations: Transformer-based methods for text 
stimuli (Layer #, context length, architecture)

Transformer-XL is the only model that continues to increase performance as the
context length is increased. In all networks, the middle layers perform the best
for contexts longer than 15 words. The deepest layers across all networks show a
sharp increase in performance at short-range context (fewer than 10 words),
followed by a decrease in performance. [Toneva and Wehbe, 2019]

https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2020/TNNLS_wangshaonan.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2020/TNNLS_wangshaonan.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2020/TNNLS_wangshaonan.pdf
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Gauthier, Jon, and Roger Levy. "Linking artificial and human neural representations of language." arXiv preprint arXiv:1910.01244 (2019).

• Scrambled LM
• Randomly shuffle words from the 

corpus samples, to remove all 
first order cues to syntactic 
structure. 

• LM-scrambled: words are 
shuffled within sentences

• LM-scrambled-para: words are 
shuffled within their containing 
paragraphs in the corpus.

• LM_pos: predict only the part 
of speech of a masked word, 
rather than the word itself. 

• Scrambled LMs work best!

DL Representations: Transformer-based methods for text 
stimuli (NLP task finetuning and scrambled LM)

https://arxiv.org/pdf/1910.01244.pdf
https://arxiv.org/pdf/1910.01244.pdf
https://arxiv.org/pdf/1910.01244.pdf
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Oota, Subba Reddy, Jashn Arora, Veeral Agarwal, Mounika Marreddy, Manish Gupta, and Bapi Raju Surampudi. "Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI Brain Activity?." arXiv preprint arXiv:2205.01404 (2022).

DL Representations: Transformer-based methods for text 
stimuli (NLP task finetuning)

Tasks
Paraphrase, Summarization, Question Answering, Sentiment
Analysis, NER, Word Sense Disambiguation, Natural
Language Inference, Semantic Role Labeling, Coreference
Resolution, Shallow Syntax Parsing

Pereira dataset: CR, NER, and SS perform the best.

Dendrogram constructed using similarity on representations from task-
specific Transformer encoder models with stimuli from the dataset 

passed as input. 

https://arxiv.org/pdf/2205.01404.pdf
https://arxiv.org/pdf/2205.01404.pdf
https://arxiv.org/pdf/2205.01404.pdf
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Schwartz, Dan, Mariya Toneva, and Leila Wehbe. "Inducing brain-relevant bias in natural language processing models." Advances in neural information processing systems 32 (2019).

• Settings
• Finetune BERT vs not
• Finetune BERT using one representative subject 

and train dense layer for each subject, vs 
finetune BERT for each subject.

• Finetune BERT on MEG for all subjects, then 
finetune BERT on fMRI.

• Multi-task finetune BERT for fMRI+MEG 
prediction task

• Results
• Fine-tuned models predict fMRI data better 

than vanilla BERT
• Relationships between text and brain activity 

generalize across experiment participants.
• Using MEG data can improve fMRI predictions. 
• A single model can be used to predict fMRI 

activity across multiple experiment 
participants.

DL Representations: Transformer-based methods for text 
stimuli (Multi-task setup)

https://proceedings.neurips.cc/paper/2019/file/2b8501af7b64d1aaae7dd832805f0709-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2b8501af7b64d1aaae7dd832805f0709-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2b8501af7b64d1aaae7dd832805f0709-Paper.pdf


• Representations:
• Lexical: representation that is context-

invariant. E.g., word embeddings.
• Compositional: “contextualized” 

representation generated by a system 
combining multiples words. E.g., parse trees

• Syntax: representation associated with the 
structure of sentences independently of their 
meaning

• Semantics: representation of a language 
system that are not syntactic.
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Caucheteux, Charlotte, Alexandre Gramfort, and Jean-Remi King. "Disentangling syntax and semantics in the brain with deep networks." In International Conference on Machine Learning, pp. 1336-1348. PMLR, 2021.

•

DL Representations: Comparing Transformers and 
extracting syntax vs semantics

http://proceedings.mlr.press/v139/caucheteux21a/caucheteux21a.pdf
http://proceedings.mlr.press/v139/caucheteux21a/caucheteux21a.pdf
http://proceedings.mlr.press/v139/caucheteux21a/caucheteux21a.pdf


• Represents words in terms of human (Amazon 
Mechanical Turk) ratings of their degree of 
association with different attributes of experience

• “On a scale of 0 to 6, to what degree do you think of a 
banana as having a characteristic or defining color?”

• Anderson et al., 2019: 65 attributes spanning sensory, 
motor, affective, spatial, temporal, causal, social, and 
abstract cognitive experiences. 

• Value-add on top of text models: a lot of 
experiential information goes unstated in natural 
verbal communication.

• E.g., it is rarely useful to communicate the color of 
bananas because it is obvious to all those with 
experience of bananas. 

• E.g., it would be unusual to specify that dropping things 
involves movement.

• Nishida et al., 2020 use a subset of 20 attributes.

IJCAI 2023: DL for Brain Encoding and Decoding 56

Anderson, Andrew James, Jeffrey R. Binder, Leonardo Fernandino, Colin J. Humphries, Lisa L. Conant, Rajeev DS Raizada, Feng Lin, and Edmund C. Lalor. "An integrated neural decoder of linguistic and experiential meaning." Journal of Neuroscience 39, no. 45 (2019): 8969-8987.

Anderson, Andrew James, Jeffrey R. Binder, Leonardo Fernandino, Colin J. Humphries, Lisa L. Conant, Mario Aguilar, Xixi Wang, Donias Doko, and Rajeev DS Raizada. "Predicting neural activity patterns associated with sentences using a neurobiologically motivated model of semantic 
representation." Cerebral Cortex 27, no. 9 (2017): 4379-4395.

Anderson, Andrew James, Kelsey McDermott, Brian Rooks, Kathi L. Heffner, David Dodell-Feder, and Feng V. Lin. "Decoding individual identity from brain activity elicited in imagining common experiences." Nature communications 11, no. 1 (2020): 1-14.

Experiential attributes model for text stimuli

https://www.jneurosci.org/content/jneuro/39/45/8969.full.pdf
https://www.jneurosci.org/content/jneuro/39/45/8969.full.pdf
https://www.jneurosci.org/content/jneuro/39/45/8969.full.pdf
https://www2.bcs.rochester.edu/sites/raizada/papers/Anderson_et_al_sentence_decoding_CerebralCortex2016.pdf
https://www2.bcs.rochester.edu/sites/raizada/papers/Anderson_et_al_sentence_decoding_CerebralCortex2016.pdf
https://www2.bcs.rochester.edu/sites/raizada/papers/Anderson_et_al_sentence_decoding_CerebralCortex2016.pdf
https://www2.bcs.rochester.edu/sites/raizada/papers/Anderson_et_al_sentence_decoding_CerebralCortex2016.pdf
https://www.nature.com/articles/s41467-020-19630-y
https://www.nature.com/articles/s41467-020-19630-y
https://www.nature.com/articles/s41467-020-19630-y


• Each stimulus is represented using 
a binary vector capturing 
membership to one of the eight 
semantic categories.
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Handjaras, Giacomo, Emiliano Ricciardi, Andrea Leo, Alessandro Lenci, Luca Cecchetti, Mirco Cosottini, Giovanna Marotta, and Pietro Pietrini. "How concepts are encoded in the human brain: a modality independent, category-based cortical organization of semantic knowledge." Neuroimage 135 
(2016): 232-242.

Wang, Jing, Vladimir L. Cherkassky, and Marcel Adam Just. "Predicting the brain activation pattern associated with the propositional content of a sentence: modeling neural representations of events and states." Human brain mapping 38, no. 10 (2017): 4865-4881.

• 42 neurally plausible semantic features (NPSFs)
• Perceptual and affective characteristics of an 

entity (10 NPSFs coded such features, such as 
man-made, size, color, temperature, positive 
affective valence, high affective arousal), animate 
beings (person, human-group, animal), and time 
and space properties (e.g. unenclosed setting, 
change of location)

Binary attribute representations

https://www.sciencedirect.com/science/article/pii/S1053811916301021
https://www.sciencedirect.com/science/article/pii/S1053811916301021
https://www.sciencedirect.com/science/article/pii/S1053811916301021
https://www.sciencedirect.com/science/article/pii/S1053811916301021
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf


Agenda

• Introduction to Brain encoding and decoding [30 min]
• Stimulus Representations [1 hour]

• Text Stimulus Representations
• Visual Stimulus Representations
• Audio Stimulus Representations
• Multimodal Stimulus Representations

• Coffee break [30 min]
• Deep Learning for Brain Decoding [1 hour 30 min]
• Lunch break [1 hour 30 min]
• Deep Learning for Brain Encoding [1 hour 30 min]
• Coffee break [30 min]
• Advanced Methods [1 hour 15 min]
• Summary and Future Trends [15 min]
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Visual Stimuli

• Visual field filter banks (Thirion et al., 2006; Nishimoto et al., 2011). 

• Gabor wavelet pyramid (Kay et al., 2008). 

• HMAX model (Horikawa et al., 2017).

• Convolutional neural networks (Yamins et al., 2014; Anderson et al., 2017a; 
Beliy et al., 2019; Du et al., 2020; Nishida et al., 2020). 
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Kay, Kendrick N., Thomas Naselaris, Ryan J. Prenger, and Jack L. Gallant. "Identifying natural images from human brain activity." Nature 452, no. 7185 (2008): 352-355.

Visual Stimuli: Gabor wavelet pyramid

a, Spatial frequency and position. Wavelets occur at five spatial frequencies. 
This panel depicts one wavelet at each of the first five spatial frequencies. 
At each spatial frequency f cycles/field-of-view (FOV), wavelets are 
positioned on an f × f grid, as indicated by the translucent lines. 
b, Orientation and phase. At each grid position, wavelets occur at eight 
orientations and two phases. This panel depicts a complete set of wavelets 
for a single grid position. Dashed lines indicate the bounds of the mask 
associated with each wavelet.

Gabor wavelet pyramid model. Each image is projected onto the individual 
Gabor wavelets comprising the Gabor wavelet pyramid. Gabor wavelets 
differ in size, position, orientation, spatial frequency, and phase. The 
projections for each quadrature pair of wavelets are squared, summed, 
and square-rooted, yielding a measure of contrast energy. The contrast 
energies for different quadrature wavelet pairs are weighted and then 
summed. Finally, a DC offset is added. The weights are determined by 
gradient descent with early stopping.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556484/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556484/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556484/


• Simple Cells S1
• Input images are densely sampled by 

arrays of two-dimensional filters. 
• Output: -1 to 1

• Complex Cells C1: max pooling

• Simple Cells S2
• Gaussian with mean 1 and standard 

deviation 1.

• Complex Cells C2: max pooling

• View Tuned Units (VTUs)
• C2 units provide input to VTUs
• C2 → VTU connections are the only stage 

of the HMAX model where learning occurs.

IJCAI 2023: DL for Brain Encoding and Decoding 61

Riesenhuber, Maximilian, and Tomaso Poggio. "Hierarchical models of object recognition in cortex." Nature neuroscience 2, no. 11 (1999): 1019-1025.

Horikawa, Tomoyasu, and Yukiyasu Kamitani. "Generic decoding of seen and imagined objects using hierarchical visual features." Nature communications 8, no. 1 (2017): 1-15.

Visual Stimuli: HMAX model

https://www.hms.harvard.edu/bss/neuro/bornlab/nb204/papers/riesenhuber-poggio-hierarchical-nn1999.pdf
https://www.hms.harvard.edu/bss/neuro/bornlab/nb204/papers/riesenhuber-poggio-hierarchical-nn1999.pdf
https://www.hms.harvard.edu/bss/neuro/bornlab/nb204/papers/riesenhuber-poggio-hierarchical-nn1999.pdf
https://www.nature.com/articles/ncomms15037?origin=ppub
https://www.nature.com/articles/ncomms15037?origin=ppub
https://www.nature.com/articles/ncomms15037?origin=ppub


• For word stimuli, gather 20 most relevant images using Google search, then get CNN representation 
(Anderson et al., 2017).

• AlexNet, VGG-16 (Nishida et al., 2020; Berezutskaya et al., 2020), Inception, ResNet, DenseNet.
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Visual Stimuli: Convolutional Neural Networks 
(CNNs)



• Step 1: Pass film frames through 
concept recognition module to get 
up to 20 concept labels per frame.

• Used Clarifai.

• Step 2: Get fastText embeddings for 
each concept label. Frame 
embedding is average of word 
embeddings.

• Step 3: PCA for dimensionality 
reduction.
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Berezutskaya, Julia, Zachary V. Freudenburg, Luca Ambrogioni, Umut Güçlü, Marcel AJ van Gerven, and Nick F. Ramsey. "Cortical network responses map onto data-driven features that capture visual semantics of movie fragments." Scientific reports 10, no. 1 (2020): 1-21.

Visual Stimuli: Object Recognition with Word embeddings

https://www.nature.com/articles/s41598-020-68853-y
https://www.nature.com/articles/s41598-020-68853-y
https://www.nature.com/articles/s41598-020-68853-y


• Problem: Scarce labeled data.
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Beliy, Roman, Guy Gaziv, Assaf Hoogi, Francesca Strappini, Tal Golan, and Michal Irani. "From voxels to pixels and back: Self-supervision in natural-image reconstruction from fMRI." Advances in Neural Information Processing Systems 32 (2019).

Visual Stimuli: Semi-supervised CNNs

Training phases & Architecture. (a) The first training phase: Supervised 
training of the Encoder with {Image, fMRI} pairs. (b) Second phase: Training 
the Decoder simultaneously with 3 types of data: {Image, fMRI} pairs 
(supervised examples), unlabeled natural images (self-supervision), and 
unlabeled test-fMRI (self-supervision). Note that the test-images are never 
used for training. The pretrained Encoder from the first training phase is 
kept fixed in the second phase. (c) Encoder and Decoder architectures. BN, 
US, and ReLU stand for batch normalization, up-sampling, and rectified 
linear unit, respectively.

https://proceedings.neurips.cc/paper/2019/file/7d2be41b1bde6ff8fe45150c37488ebb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7d2be41b1bde6ff8fe45150c37488ebb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7d2be41b1bde6ff8fe45150c37488ebb-Paper.pdf


StepEncog, a convolutional LSTM autoencoder model trained on fMRI voxels.
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Oota, Subba Reddy, Vijay Rowtula, Manish Gupta, and Raju S. Bapi. "StepEncog: A convolutional LSTM autoencoder for near-perfect fMRI encoding." In 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE, 2019.

Visual Stimuli: Convolutional LSTM Autoencoder

https://www.researchgate.net/profile/Vijay-Rowtula/publication/335517137_StepEncog_A_Convolutional_LSTM_Autoencoder_for_Near-Perfect_fMRI_Encoding/links/5d6a0f51299bf1808d59cab8/StepEncog-A-Convolutional-LSTM-Autoencoder-for-Near-Perfect-fMRI-Encoding.pdf
https://www.researchgate.net/profile/Vijay-Rowtula/publication/335517137_StepEncog_A_Convolutional_LSTM_Autoencoder_for_Near-Perfect_fMRI_Encoding/links/5d6a0f51299bf1808d59cab8/StepEncog-A-Convolutional-LSTM-Autoencoder-for-Near-Perfect-fMRI-Encoding.pdf
https://www.researchgate.net/profile/Vijay-Rowtula/publication/335517137_StepEncog_A_Convolutional_LSTM_Autoencoder_for_Near-Perfect_fMRI_Encoding/links/5d6a0f51299bf1808d59cab8/StepEncog-A-Convolutional-LSTM-Autoencoder-for-Near-Perfect-fMRI-Encoding.pdf
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Takagi, Yu, and Shinji Nishimoto. "High-resolution image reconstruction with latent diffusion models from human brain activity." In CVPR, pp. 14453-14463. 2023.

Latent Diffusion Models

https://www.biorxiv.org/content/10.1101/2022.11.18.517004v3.full.pdf
https://www.biorxiv.org/content/10.1101/2022.11.18.517004v3.full.pdf
https://www.biorxiv.org/content/10.1101/2022.11.18.517004v3.full.pdf


Agenda

• Introduction to Brain encoding and decoding [30 min]
• Stimulus Representations [1 hour]

• Text Stimulus Representations
• Visual Stimulus Representations
• Audio Stimulus Representations
• Multimodal Stimulus Representations

• Coffee break [30 min]
• Deep Learning for Brain Decoding [1 hour 30 min]
• Lunch break [1 hour 30 min]
• Deep Learning for Brain Encoding [1 hour 30 min]
• Coffee break [30 min]
• Advanced Methods [1 hour 15 min]
• Summary and Future Trends [15 min]
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Audio Stimuli

• Word rate, Phoneme rate, Presence of phonemes (Huth et al., 2016).

• SoundNet (Aytar, Vondrick, and Torralba 2016) features (Nishida et al., 2020)
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Huth, Alexander G., Wendy A. De Heer, Thomas L. Griffiths, Frédéric E. Theunissen, and Jack L. Gallant. "Natural speech reveals the semantic maps that tile human cerebral cortex." Nature 532, no. 7600 (2016): 453-458.

Nishida, Satoshi, Yusuke Nakano, Antoine Blanc, Naoya Maeda, Masataka Kado, and Shinji Nishimoto. "Brain-mediated transfer learning of convolutional neural networks." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 5281-5288. 2020.
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• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour]
• Text Stimulus Representations
• Visual Stimulus Representations
• Audio Stimulus Representations
• Multimodal Stimulus Representations

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 30 min]

• Deep Learning for Brain Encoding [1 hour 30 min]

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Multimodal Stimulus Representations

• Processing videos required audio+image representations
• E.g., VGG+SoundNet (Nishida et al., 2020)

• Image+text combination models (Wang et al., 2020)
• GloVe+VGG, and ELMo+VGG

• Averaging or concatenation
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Wang, Shaonan, Jiajun Zhang, Haiyan Wang, Nan Lin, and Chengqing Zong. "Fine-grained neural decoding with distributed word representations." Information Sciences 507 (2020): 256-272.
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Multimodal Stimuli: Visio-linguistic representations

• Pretrained CNNs: VGGNet19, ResNet50, InceptionV2ResNet and EfficientNetB5

• Pretrained text Transformers: RoBERTa

• Image Transformers: Vision Transformer (ViT), Data Efficient Image Transformer (DEiT), and Bidirectional 
Encoder representation from Image Transformer (BEiT). 

• Late-fusion models: VGGNet19+RoBERTa, ResNet50+RoBERTa, InceptionV2ResNet+RoBERTa and 
EfficientNetB5+RoBERTa. 

• Multi-modal Transformers: Contrastive Language-Image Pre-training (CLIP), Learning Cross-Modality Encoder 
Representations from Transformers (LXMERT), and VisualBERT. 

• VisualBERT performs the best for brain encoding!
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Oota, Subba Reddy, Jashn Arora, Vijay Rowtula, Manish Gupta, and Raju S. Bapi. "Visio-Linguistic Brain Encoding." arXiv preprint arXiv:2204.08261 (2022).
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Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 30 min]

• Deep Learning for Brain Encoding [1 hour 30 min]

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Outline

• Introduction to Brain Decoding

• Decoding models
• Linear Models

• Non-Linear Models (including DNNs)

• Language
• Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Encoding vs. Decoding

Haiguang Wen et al, 
2017

Encoding

Decoding

Stimulus
Representation

Stimulus
Representation

fMRI

fMRI
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What is Brain 
Decoding?

• Can we reconstruct the stimulus, given the brain 
response? 

• Can you read the mind with fMRI?

• Or at least tell what the person saw?

Visual Task

Language Task

Smith et al., 2011, Wang et al. 2019
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Linguistic 
Decoding

input

output

Zou et al., 2022
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Outline

• Introduction to Brain Decoding

• Decoding models
• Linear Models

• Non-Linear Models (including DNNs)

• Evaluation Metrics

• Language
• Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Linear Decoder Models

Ridge / Logistic Regression
Stimulus 

Representation

Stimulus 
Classification

Horikawa et al. 2018 
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Non-Linear Decoder

Vu et al. 2018 

Deep CNNs
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Evaluating Decoding Models: Pairwise Accuracy

ith Concept 
Word

jth Concept 
Word

Periera et al. 2018  
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Y1

Evaluating Decoding Models: Rank Accuracy

Y2

Yn

Periera et al. 2018  

ith Concept 
Word

Correaltion

rank = 
rsort(corr_scores).index

(correlation) 

All the correlation scores in 
descending order
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Representational Similarity Matrix (RSM)

corr(Scene1, 
Scen2)

Moussa et al. 2012  
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Representational Dissimilarity Matrix (RDM)

Hamed et al. 2014  
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Representation Similarity Analysis

Kriegeskorte et al. 2018  

DSM = RDM
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Outline

• Introduction to Brain Decoding

• Decoding models
• Linear Models

• Non-Linear Models (including DNNs)

• Language
• Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022

IJCAI 2023: DL for Brain Encoding and Decoding
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Linguistic Brain Decoding

• Toward Word-level Universal Brain Decoder

• Does injecting linguistic structure into language models lead to better 
alignment with brain recordings?

• Multi-view and Cross-view Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Classical Decoders

• Classical decoding solutions extracting linguistic meaning from imaging data 
have been largely limited to 

• concrete nouns, 

• using similar stimuli for training and testing, 

• small number of semantic categories.

Mitchell et al. 2008
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Toward a universal decoder

• Presented a new approach for building a brain decoding system:
• words and sentences are represented as vectors in a semantic space constructed from 

massive text corpora.

• wide variety of both concrete and abstract topics from two separate datasets.

• subject reads naturalistic linguistic stimuli on potentially any topic, including abstract 
ideas (ex., pleasure, justice, love, etc).

Pereira et al. 2018

GloVE 
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Pennington et al. 2014      



Dataset Details (Experiment-1)

Concept + 
Sentence View

Concept 
Word

Concept + 
Picture View

Concept + 
Wordcloud 

View

Periera et al. 2018  
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Dataset Details (Experiment-1)

• 180 Concepts
• 128 nouns

• 22 verbs

• 29 adjectives

• 1 function word

• 16 subjects

• AAL atlas (180 regions)

• Gordon atlas (333 regions)
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Dataset Details (Experiments 2 and 3)

Topic Concept Topic

Periera et al. 2018  
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Informative Voxel Selection

Voxel + 26 
neighbors in 3D 

Input Ridge 
Regression

Output

Stimulus:
Apartment

P
rese

n
t

GloVE 

P
rese

n
t

Stimulus:
Apartment Pearson Correlation (R) = Corr(Y, 

W(X))

Correlation across 
feature dimensions

V1 – R1

V2 – R2

….
Vn – R3

Select 5000 voxels based on 
top-5000 correlation scores 

3D Image

X YW
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Pairwise and Rankwise Results

Periera et al. 2018  
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Decoder built from Expt 1 could distinguish sentences at all levels of granularity
Universal Decoder!



Distribution of Informative Voxels

Periera et al. 2018  
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Brain activation 
patterns consistent 

across 16 Ss

5000 informative voxels are roughly evenly 
distributed among the four networks 

Overall, LN contains a relatively higher proportion of 
informative voxels, compared to its size!



Insights

• Presented a viable approach for building a universal decoder, capable of 
extracting a representation of mental content from linguistic materials.

• The semantic resolution of brain-based decoding of mental content will 
continue to improve rapidly

• given the progress in the development of distributed semantic representations
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Linguistic Brain Decoding

• Toward Word-level Universal Brain Decoder

• Linking artificial and human neural representations of language

• Multi-view and Cross-view Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Linking artificial and human neural representations of 
language

Ridge 
Regression

Gauthier et al. 2019  

• Evaluate the link between 
human brain activity and 
neural network models as 
the models are optimized 
for different tasks.
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• To investigate why these 
mappings are successful?

• Uncovering the parallel 
representational contents 
shared between human 
brains and neural 
networks



Devlin et al. 2019

Pretrained vs. Task-specific language models
106
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Natural Language Understaning Tasks
• Paraphrase
• Question Answering
• Sentiment Analysis
• Natural Language Inference

Devlin et al. 2019, Bowon et al. 2020

Pretrained vs. Task-specific language models

Squad-2.0: Question Answering
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Custom Tasks

• Scrambled language modeling:
• LM-scrambled: deals with sentence inputs where words are shuffled within 

sentences

• LM-scrambled-para, uses inputs where words are shuffled within their containing 
paragraphs in the corpus.

Fingers are used for grasping, writing, grooming 
and other activities.

grasping are used for Fingers, grooming, writing
and other activities.

This is Los Angeles. And it's the height of 
summer. In a small bungalow off of La Cienega, 
Clara serves homemade chili and chips in red 
plastic bowls -- wine in blue plastic.

This is Los Angeles. And the height it's of summer.
In a bungalow off small of La Cienega, Clara serves 
homemade chili and chips in red plastic bowls --
wine in blue plastic. 
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Brain decoding performance

Scrambled language models have 
shown better performance!!

Gauthier et al. 2019  
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Brain decoding performance trajectories over fine-tuning 
time

Gauthier et al. 2019  
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Summary

• Set of scrambled language modeling tasks which best match the structure of 
brain activations among the models tested.

• models optimized for LM- scrambled and LM-scrambled-para — the models which 
improve in brain decoding performance
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Linguistic Brain Decoding

• Toward Word-level Universal Brain Decoder

• Linking artificial and human neural representations of language (contd)

• Multi-view and Cross-view Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Continuous Language Decoder

Tang, LaBel, Jain & Huth (2023)
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Continuous Language Decoder

Tang, LaBel, Jain & Huth (2023)
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Continuous Language Decoder

Tang, LaBel, Jain & Huth (2023)



Summary

• Continuous language representations of semantic meaning can be decoded 
(reconstructed) from non-invasive brain recordings (fMRI), 

• Given novel brain recordings, decoder generates intelligible word sequences 
that recover the meaning of perceived speech, imagined speech, and even 
silent videos, demonstrating that a single language decoder can be applied to 
a range of semantic tasks.

• Exciting possibility enabling future multipurpose brain-computer interfaces!
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Linguistic Brain Decoding

• Toward Word-level Universal Brain Decoder

• Linking artificial and human neural representations of language

• Multi-view and Cross-view Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Multi-view and Cross-ViewBrain Decoding

• Human  brains have  the  unique  capability  of  language 
acquisition:

• the process of learning the language 
• understand  the  meaning  of  concepts from  multiple  

modalities  such  as  images,  text, speech, and videos.

• Prior works focus on single-view brain decoding using traditional 
feature engineering.

• However, how the brain captures the meaning of linguistic stimuli 
across multiple views is still a critical open question in 
neuroscience.

• Consider three different views of the concept bird: 
• (1) sentence using the target word,
• (2) picture presented with the target word label, and 
• (3) word cloud containing the target word along with other 

semantically related words.

• Earlier works have explored which of these three different  views  
provides  richer  information  to  understand the concept.

Oota et al. 2022  
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Multi-view decoding

Wordcloud 
View

Train

Sentence View

Picture View

Wordcloud View

Oota et al. 2022  

Picture 
View

Train

Sentence 
View

Train
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Multi-view decoding results

Picture 
View

Train

BERT 
Representaion

s

Shuffled the 
Target Concepts Test

Sentence 
View

Train
WordCloud 

View
Train

Pictures Best 
Accuracy

Sentences 
Best Accuracy

Oota et al. 2022  
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Distribution of Informative Voxels

Oota et al. 2022  
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Cross-view Decoding

Picture 
View

Train

CaptionTest

Picture 
View

Train

Visual wordsTest

Wordcloud 
View

Train

SentenceTest

Sentence 
View

Train

KeywordsTest

Oota et al. 2022  
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Cross-view Decoding results

BERT 
Representaion

s

Shuffled the Target 
Concepts

Oota et al. 2022  
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Summary

• Cross-view and Multi-view decoding tasks establish that the information 
contained in the brain response is rich and capable of driving multiple 
downstream tasks.
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Linguistic Brain Decoding

• Toward Word-level Universal Brain Decoder

• Linking artificial and human neural representations of language

• Multi-view and Cross-view Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 30 min]

• Deep Learning for Brain Encoding [1 hour 30 min]

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour 30 min]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 15 min]

• Deep Learning for Brain Encoding [1 hour 30 min]

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour 30 min]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 15 min]

• Deep Learning for Brain Encoding [1 hour 30 min]
• Classic findings & common approaches
• More recent findings utilizing deep learning

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Mechanistic understanding of information processing in 
the brain: 4 big questions

132

HowWhere

WhenWhat



IJCAI 2023: DL for Brain Encoding and Decoding

stimulus 
properties

Encoding models have a causal interpretation

133

corr(                  
)

Ytest, 
Ytest

^
Evaluate
:

“The problem is when the 
capsule moves from an 
elliptical orbit to a 
parabolic orbit.”

Reveal which brain areas are affected 
by stimulus properties  [Weichwald et al. 2015] ytrain

Train
:

<0,1,...
0>

latent brain-
relevant 
stimulus properties

=  hypothesis    for

stim. 
representation

stimulus 
representation     

<0, 1, … 0>

Part of Speech: 
Noun
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Classic findings using encoding models

• Using representations of stimuli not from deep learning

• Language: 

• Mitchell et al. 2008, Science

• Vision: 

• Kay et al. 2008, Nature

• Audio:

• Santoro et al. 2014, PLoS Comp Bio
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Classic encoding model finding: Language

135

• Stimuli: concrete nouns + line drawings

• Stimulus representation: corpus co-occurrence counts with 25 sensory-motor verbs (e.g. see, 
hear, taste, smell)

Mitchell, Tom M., Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L. Malave, Robert A. Mason, and Marcel Adam Just. "Predicting human brain activity associated with the meanings of nouns." science 320, no. 5880 (2008): 1191-1195.

[Barsalou, 1999; Barsalou, 2008; Pecher et al., 2005]

figure from Kemmerer, 2014; adapted from Thompson-
Schill et al. 2006

Empirical evidence for distributed organization for 
attributes related to:

● audition [Kiefer et al., 2008]

● color [Simmons et al., 2007]

● shape [Chao et al., 1999]

● motion [Damasio et al., 1996]

● olfaction and taste [Goldberg, Perfetti, et al., 2006a; Goldberg, 

Perfetti, et al., 2006b]

bear

https://www.science.org/doi/pdf/10.1126/science.1152876?casa_token=mb6_AS1D9QcAAAAA:cOwmrnT6H_zDTqiz_jQ1tLfLQGfKVZ3ieyhHEaldzx8JamQ-JBk9q637zkErMfY645-k6KXNv7vtWQ


IJCAI 2023: DL for Brain Encoding and Decoding

Classic encoding model finding: Language

136

• Stimuli: concrete nouns + line drawings

• Stimulus representation: corpus co-occurrence counts with 25 sensory-motor verbs (e.g. see, 
hear, taste, smell)

• Brain recording: fMRI

bear

Accurately predicts fMRI recordings for a 
novel word

Correspondences
between a semantic 
property (“push”) and 
the function of the 
cortical regions where 
the fMRI recordings are 
well predicted

Mitchell, Tom M., Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L. Malave, Robert A. Mason, and Marcel Adam Just. "Predicting human brain activity associated with the meanings of nouns." science 320, no. 5880 (2008): 1191-1195.

https://www.science.org/doi/pdf/10.1126/science.1152876?casa_token=mb6_AS1D9QcAAAAA:cOwmrnT6H_zDTqiz_jQ1tLfLQGfKVZ3ieyhHEaldzx8JamQ-JBk9q637zkErMfY645-k6KXNv7vtWQ
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Classic encoding model finding: Vision

137

Kay, Kendrick N., Thomas Naselaris, Ryan J. Prenger, and Jack L. Gallant. "Identifying natural images from human brain activity." Nature 452, no. 7185 (2008): 352-355.

• Stimuli: natural images

• Stimulus representation: mixtures of Gabor wavelets

• Brain recording & modality: fMRI, viewing

Encoding models estimated quantitative 
receptive fields for V1-V3 voxels 

Identified which of a set of candidate 
natural image was viewed by a participant

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556484/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556484/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556484/
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Classic encoding model finding: Audio

138

Santoro, Roberta, Michelle Moerel, Federico De Martino, Rainer Goebel, Kamil Ugurbil, Essa Yacoub, and Elia Formisano. "Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex." PLoS computational biology 10, no. 1 
(2014): e1003412.

• Stimuli: natural sounds (speech, music, nature, tools)

• Stimulus representation: spectro-temporal filters that are 
selective for modulations along space and/or time

• Brain recording & modality: fMRI, listening

spati
al

tempor
al posterior/dorsal auditory: 

coarse spectral info & 
high temporal precision

anterior/ventral auditory: 
fine-grained spectral & 
low temporal precision

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003412
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003412
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Deep learning models enable data-driven encoding 
models for naturalistic stimuli

139

more stimulus 
properties that affect 
brain activity

more naturalistic 
stimuli

<0,1,...
0>

simple stim. representations 
explain less variance in brain 
activity

DeepMind’s New AI Taught Itself to Be the World’s Greatest Go Player
Singularity Hub

Meet GPT-3. It Has Learned to Code (and Blog and Argue)
The New York Times
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Data-driven encoding models evaluate the relationships 
between brains and deep learning models

140

fMRI

A priori locations in 
DL system and brain

Deep learning 
system

how are 
they 
related?

Multimodal 
naturalistic 

stimulus

Data-driven 
encoding model



IJCAI 2023: DL for Brain Encoding and Decoding

Encoding: training and evaluation

141

function      often modeled as linear 
[Mitchell et al. 2008, Nishimoto et al., 2011; 

Sudre et al., 2012; Wehbe et al., 2014]

Ivanova, Anna A., Martin Schrimpf, Stefano Anzellotti, Noga Zaslavsky, Evelina 
Fedorenko, and Leyla Isik. "Is it that simple? Linear mapping models in 
cognitive neuroscience." bioRxiv (2021).

Considerations for
Linear vs non-
linear 

https://www.biorxiv.org/content/10.1101/2021.04.02.438248v2.abstract
https://www.biorxiv.org/content/10.1101/2021.04.02.438248v2.abstract
https://www.biorxiv.org/content/10.1101/2021.04.02.438248v2.abstract
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Encoding: training and evaluation

142

function      often modeled as linear 
[Mitchell et al. 2008, Nishimoto et al., 2011; 

Sudre et al., 2012; Wehbe et al., 2014]

Training:   cross validation (CV), regularization parameter chosen via nested CV

Evaluation:   1) make predictions for heldout data

2) compare predictions with true brain data

3) stringent statistical testing                                                                                             
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● Method:
○ Split dataset into train, validation, and test

○ Employ cross-validation to select model parameters based on validation dataset

○ Reduce overfitting by using regularization

■ Ridge regularization

Encoding: training setup

143

Test how well      predicts unseen brain 
recordings

Learn function

● Goal: find a mapping from stimulus 
representation to brain data that 
generalizes to new brain data 
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• Independent model per participant

Encoding: training independent models

144

P1 …P2 PN

P1, v1 P1, v2 … P1, vm

• Independent model per voxel / sensor-timepoint
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Encoding: fMRI specifics

145

Jain, Shailee, Vy Vo, Shivangi Mahto, Amanda LeBel, Javier S. Turek, and Alexander Huth. "Interpretable multi-timescale models for predicting fMRI responses to continuous natural speech." Advances in Neural Information Processing Systems 33 (2020): 13738-
13749.

https://proceedings.neurips.cc/paper/2020/hash/9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html
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Encoding: evaluation setup

146

Test how well      predicts unseen brain 
recordings

Learn function

● Predict data heldout from training by applying learned function to 
corresponding stimulus representations

● Compare predictions of brain data to true brain data:
○ Evaluation metrics
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Encoding: evaluation metrics

147

Millet, Juliette, Charlotte Caucheteux, Pierre Orhan, Yves Boubenec, Alexandre Gramfort, Ewan Dunbar, 
Christophe Pallier, and Jean-Remi King. "Toward a realistic model of speech processing in the brain with self-
supervised learning." arXiv preprint arXiv:2206.01685 (2022).

Pearson 
correlation

2v2 accuracy

Toneva, Mariya, Otilia Stretcu, Barnabás Póczos, Leila Wehbe, and Tom M. Mitchell. 
"Modeling task effects on meaning representation in the brain via zero-shot meg prediction." 
Advances in Neural Information Processing Systems 33 (2020): 5284-5295.

https://arxiv.org/abs/2206.01685
https://arxiv.org/abs/2206.01685
https://arxiv.org/abs/2206.01685
https://proceedings.neurips.cc/paper/2020/file/38a8e18d75e95ca619af8df0da1417f2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/38a8e18d75e95ca619af8df0da1417f2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/38a8e18d75e95ca619af8df0da1417f2-Paper.pdf
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• Goal: determine whether the estimated similarity between the DL representations 

and the brain recordings is significant

• Simple method that makes no assumptions about underlying data:
• Permutation test

• Break input-to-output correspondence by permuting output labels

• Estimate similarity

• Repeat 1000s times to estimate null distribution

• P-value = proportion of times the similarity metric from permuted labels >= sim. 

metric from original labels

• Specifically for fMRI:

• Permute labels in blocks to preserve the autoregressive structure

• Correct for multiple comparisons
• FDR, FWER, etc.

Encoding: statistical significance
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Encoding: performance visualization

149

fMRI MEG/EEG

Gao, James S., Alexander G. Huth, Mark D. Lescroart, and Jack L. Gallant. "Pycortex: an interactive surface 
visualizer for fMRI." Frontiers in neuroinformatics (2015): 23. Gramfort, Alexandre, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian Brodbeck, 

Roman Goj et al. "MEG and EEG data analysis with MNE-Python." Frontiers in neuroscience (2013): 267.

https://www.frontiersin.org/articles/10.3389/fninf.2015.00023/full
https://www.frontiersin.org/articles/10.3389/fninf.2015.00023/full
https://www.frontiersin.org/articles/10.3389/fnins.2013.00267/full?source=post_page-----58aae90351e5----------------------
https://www.frontiersin.org/articles/10.3389/fnins.2013.00267/full?source=post_page-----58aae90351e5----------------------


Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour 30 min]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 15 min]

• Deep Learning for Brain Encoding [1 hour 30 min]
• Classic findings & common approaches
• More recent findings utilizing deep learning

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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More recent work utilizing progress in DL for encoding

• Using representations of stimuli from deep learning systems

• Language: 

• Wehbe et al. 2014; Jain and Huth, 2018; Toneva and Wehbe, 2019;  Caucheteux and 
King, 2020/2022; Schrimpf et al. 2020/2021; Goldstein et al. 2021/2022

• Vision: 

• Yamins et al. 2014; Cichy et al. 2016; Konkle and Alvarez, 2020/2022;  Zhuang et al. 2022

• Audio:

• Kell et al. 2018; Vaidya, Jain, and Huth 2022; Millet et al. 2022
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• Stimuli: one chapter of Harry Potter

• Stimulus representation: derived from an NLP system (RNN) trained on Harry Potter fan 
fiction

• Brain recording: MEG, reading

Language: work utilizing DL progress

152

significant word-by-word alignment between MEG 
& representations of words and context from 
recurrent NLP systems

Wehbe, Leila, Ashish Vaswani, Kevin Knight, and Tom Mitchell. "Aligning context-based statistical models of language with brain activity during reading." In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 233-243. 2014.

https://aclanthology.org/D14-1030.pdf
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Audio: work utilizing DL progress

153

• Stimuli: Moth Radio Hour

• Stimulus representation: derived from self-supervised text language model trained to predict 
upcoming word in other radio stories

• Brain recording & modality: fMRI, listening

alignment between fMRI 
& recurrent NLP 
representations w/ 
varying context; 
best alignment with 
middle layer

Jain, Shailee, and Alexander Huth. "Incorporating context into language encoding models for fMRI." Advances in neural information processing systems 31 (2018).

https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
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Language: work utilizing DL progress

154

• Stimuli: one chapter of Harry Potter

• Stimulus representation: derived from pretrained NLP systems 

• Brain recording & modality: fMRI, reading

Toneva, M., & Wehbe, L. (2019). Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain). Advances in Neural Information Processing Systems, 32.

across several types 
of large NLP systems, 
best alignment with 
fMRI in middle layers

https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
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Language: work utilizing DL progress

155

• Stimuli: sentences

• Stimulus representation: derived from pretrained NLP systems 

• Brain recording & modality: MEG & fMRI, reading

best alignment with fMRI & 
MEG in middle layers

better performance at 
predicting next word -> better 
prediction of fMRI & MEg 

Caucheteux, Charlotte, and Jean-Rémi King. "Brains and algorithms partially converge in natural language processing." Communications biology 5, no. 1 (2022): 1-10.

https://www.nature.com/articles/s42003-022-03036-1
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Language: work utilizing DL progress

156

Schrimpf, Martin, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A. Hosseini, Nancy Kanwisher, Joshua B. Tenenbaum, and Evelina Fedorenko. "The neural architecture of language: Integrative modeling converges on predictive processing." Proceedings of the National Academy of 
Sciences 118, no. 45 (2021): e2105646118.

• Stimuli: sentences, passages, short story

• Stimulus representation: derived from pretrained NLP systems 

• Brain recording & modality: fMRI & ECoG, reading & listening
some NLP systems can predict 
fMRI and ECoG up to 100% of 
estimated noise ceiling

https://www.pnas.org/doi/abs/10.1073/pnas.2105646118
https://www.pnas.org/doi/abs/10.1073/pnas.2105646118
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Language: work utilizing DL progress

157

Goldstein, Ariel, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A. Nastase et al. "Shared computational principles for language processing in humans and deep language models." Nature neuroscience 25, no. 3 (2022): 369-380.

• Stimuli: story

• Stimulus representation: derived from pretrained NLP systems 

• Brain recording & modality: ECoG, listening

NLP word representations 
predict ECoG recordings for 
upcoming words

https://www.nature.com/articles/s41593-022-01026-4
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Recent work utilizing progress in DL for encoding

• Using representations of stimuli from deep learning systems

• Data-driven

• Language: 

• Wehbe et al. 2014; Jain and Huth, 2018; Toneva and Wehbe, 2019;  Caucheteux and 
King, 2020/2022; Schrimpf et al. 2020/2021; Goldstein et al. 2021/2022

• Vision: 

• Yamins et al. 2014; Cichy et al. 2016; Konkle and Alvarez, 2020/2022;  Zhuang et al. 2022

• Audio:

• Kell et al. 2018; Vaidya, Jain, and Huth 2022; Millet et al. 2022
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Vision: work utilizing DL progress

159

Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex." Proceedings of the 
national academy of sciences 111, no. 23 (2014): 8619-8624.

• Stimuli: images of natural objects

• Stimulus representation: layers in pretrained CNNs

• Brain recording & modality:  multiarray recordings in rhesus 
macaques, vision

Highest layer in 
CNN model most 
predictive of IT; 
intermediate 
layers most 
predictive of V4

https://www.pnas.org/doi/pdf/10.1073/pnas.1403112111
https://www.pnas.org/doi/pdf/10.1073/pnas.1403112111
https://www.pnas.org/doi/pdf/10.1073/pnas.1403112111
https://www.pnas.org/doi/pdf/10.1073/pnas.1403112111
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Vision: work utilizing DL progress

160

Cichy, Radoslaw Martin, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba, and Aude Oliva. "Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals 
hierarchical correspondence." Scientific reports 6, no. 1 (2016): 1-13.

• Stimuli: images of natural objects

• Stimulus representation: layers of CNN tuned for 
object classification

• Brain recording: fMRI & MEG, vision

A CNN tuned for 
object classification 
captures stages of 
human visual 
processing in both 
space and time

https://www.nature.com/articles/srep27755
https://www.nature.com/articles/srep27755
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Vision: work utilizing DL progress

161

Konkle, Talia, and George A. Alvarez. "A self-supervised domain-general learning framework for human ventral stream representation." Nature communications 13, no. 1 (2022): 1-12.

• Stimuli: images of objects

• Stimulus representation: layers in self-supervised deep model

• Brain recording: fMRI, vision

Self-supervised deep models achieve 
parity with category-supervised 
models in predicting fMRI responses 
along visual hierarchy

https://www.nature.com/articles/s41467-022-28091-4


IJCAI 2023: DL for Brain Encoding and Decoding

Vision: work utilizing DL progress

162

Zhuang, Chengxu, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C. Frank, James J. DiCarlo, and Daniel LK Yamins. "Unsupervised neural network models of the ventral visual stream." Proceedings of the National 
Academy of Sciences 118, no. 3 (2021): e2014196118.

• Stimuli: images of objects

• Stimulus representation: layers in self-supervised 
deep model

• Brain recording: multiarray recordings in rhesus 
macaques, vision

Self-supervised deep models 
produce brain-like representations 
even when trained solely with noisy 
data from child head-mounted 
cameras

https://www.pnas.org/doi/abs/10.1073/pnas.2014196118
https://www.pnas.org/doi/abs/10.1073/pnas.2014196118
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Recent work utilizing progress in DL for encoding

• Using representations of stimuli from deep learning systems

• Data-driven

• Language: 

• Wehbe et al. 2014; Jain and Huth, 2018; Toneva and Wehbe, 2019;  Caucheteux and 
King, 2020/2022; Schrimpf et al. 2020/2021; Goldstein et al. 2021/2022

• Vision: 

• Yamins et al. 2014; Cichy et al. 2016; Konkle and Alvarez, 2020/2022;  Zhuang et al. 2022

• Audio:

• Kell et al. 2018; Vaidya, Jain, and Huth 2022; Millet et al. 2022
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Audio: work utilizing DL progress

164

Kell, Alexander JE, Daniel LK Yamins, Erica N. Shook, Sam V. Norman-Haignere, and Josh H. McDermott. "A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy." Neuron 98, no. 3 (2018): 630-644.

• Stimuli: natural sounds

• Stimulus representation: deep model 
optimized for speech and music recognition

• Brain recording & modality: fMRI, listening

Primary auditory 
responses predicted 
best by intermediate 
layers of task-
optimized model; 
non-primary 
responses predicted 
best by late layers

https://www.sciencedirect.com/science/article/pii/S0896627318302502
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Audio: work utilizing DL progress

165

Vaidya, Aditya R., Shailee Jain, and Alexander G. Huth. "Self-supervised models of audio effectively explain human cortical responses to speech." ICML (2022).

• Stimuli: Moth Radio Hour

• Stimulus representation: derived from pretrained self-supervised 
speech models

• Brain recording & modality: fMRI, listening

Middle layers of self-supervised 
speech models predict auditory 
cortex the best

https://arxiv.org/pdf/2205.14252.pdf
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Audio: work utilizing DL progress

166

Millet, Juliette, Charlotte Caucheteux, Pierre Orhan, Yves Boubenec, Alexandre Gramfort, Ewan Dunbar, Christophe Pallier, and Jean-Remi King. "Toward a realistic model of speech processing in the brain with self-supervised learning." arXiv preprint arXiv:2206.01685 (2022).

• Stimuli: audio books

• Stimulus representation: derived from pretrained self-supervised speech model

• Brain recording & modality: fMRI, listening in 3 languages (Eng, Fr, Mandarin)

Self-supervised speech models 
reveal specialization for native 
sounds in the STS and MTG;

IFG and AG show more general 
specialization for speech rather 
than native-language

https://arxiv.org/abs/2206.01685


Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour 30 min]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 15 min]

• Deep Learning for Brain Encoding [1 hour 30 min]
• Classic findings & common approaches
• More recent findings utilizing deep learning

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Deep Learning for Brain 
Encoding and Decoding

Subba Reddy Oota1, Manish Gupta2,3, Raju S. Bapi2, Mariya Toneva4

1Inria Bordeaux, France; 2IIIT Hyderabad, India; 3Microsoft, India; 4MPI for Software Systems, Germany

subba-reddy.oota@inria.fr, gmanish@microsoft.com, raju.bapi@iiit.ac.in, mtoneva@mpi-sws.org
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Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour 30 min]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 15 min]

• Deep Learning for Brain Encoding [1 hour 30 min]

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Challenges in using DL for cognitive modeling

• Not designed to specifically model brain processing

170

NLP systems: Designed to predict upcoming 
words

Harry   never   thought   ???

Harry   never   thought    he     ???

Harry   never   thought    he     would     ???

...
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Challenges in using DL for cognitive modeling

• Not designed to specifically model brain processing

• Training DL models using brain recordings

• Task-based modeling

171



IJCAI 2023: DL for Brain Encoding and Decoding

Challenges in using DL for cognitive science

• Not designed to specifically model brain processing

• Training DL models using brain recordings

• Task-based modeling

• Can be difficult to interpret due to multiple sources of information

172

part-of-speech

semantic role

dependence on 
other words

...

+

+

+

?
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Challenges in using DL for cognitive science

• Not designed to specifically model brain processing

• Training DL models using brain recordings

• Task-based modeling

• Can be difficult to interpret due to multiple sources of information

• Disentangling contributions of different info sources to brain predictions
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Challenges in using DL for cognitive science

• Not designed to specifically model brain processing

• Training DL models using brain recordings

• Task-based modeling

• Can be difficult to interpret due to multiple sources of information

• Disentangling contributions of different info sources to brain predictions
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Training DL models using brain recordings

175

Brain-optimized NLP 
model predicts unseen 
fMRI recordings better, 
especially in canonical 
language regions

A priori locations in 
NLP system and brain

NLP systemChapter of a 
book

𝑥 alignment 

error 
propagati
on

fMRI

Schwartz, Dan, Mariya Toneva, and Leila Wehbe. "Inducing brain-relevant bias in natural language processing models." Advances in neural information processing systems 32 (2019).

• Stimuli: one chapter of Harry Potter

• Stimulus representation: brain-optimized NLP 
model

• Brain recording & modality: fMRI & MEG, reading

https://proceedings.neurips.cc/paper/2019/file/2b8501af7b64d1aaae7dd832805f0709-Paper.pdf
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Training DL models using brain recordings

176

Seeliger, Katja, Luca Ambrogioni, Yağmur Güçlütürk, Leonieke M. van den Bulk, Umut Güçlü, and Marcel AJ van Gerven. "End-to-end neural system identification with neural information flow." PLOS Computational Biology 17, no. 2 (2021): e1008558.

• Stimuli: movie and TV show clips

• Stimulus representation: brain-optimized CNN

• Brain recording & modality: fMRI, vision

Brain-optimized vision 
model trained entirely 
on fMRI recordings ~= 
task-optimized 
networks for predicting 
brain recordings in 
early and high-level ROI

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008558#:~:text=Neural%20information%20flow%20(NIF)%20provides,gradient%20descent%20from%20noninvasive%20data
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Training DL models using brain recordings

177

Khosla, Meenakshi, and Leila Wehbe. "High-level visual areas act like domain-general filters with strong selectivity and functional specialization." bioRxiv (2022).

• Stimuli: images natural scenes

• Stimulus representation: brain-optimized CNN

• Brain recording & modality: fMRI, vision

Brain-optimized vision 
model can predict brain 
signals corresponding 
to a category of stimuli 
that it was never 
trained on

https://www.biorxiv.org/content/10.1101/2022.03.16.484578v1.full
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Training DL models using brain recordings

178

St-Yves, Ghislain, Emily J. Allen, Yihan Wu, Kendrick Kay, and Thomas Naselaris. "Brain-optimized neural networks learn non-hierarchical models of representation in human visual cortex." Nature Communications (2023).

• Stimuli: images natural scenes

• Stimulus representation: brain-optimized CNN

• Brain recording & modality: fMRI, vision

Brain-optimized vision 
model can learn 
representations that do 
not follow a strict 
hierarchy

https://www.nature.com/articles/s41467-023-38674-4


IJCAI 2023: DL for Brain Encoding and Decoding

Challenges in using DL for cognitive modeling

• Not designed to specifically model brain processing

• Training DL models using brain recordings

• Task-based modeling

• Can be difficult to interpret due to multiple sources of information

• Disentangling contributions of different info sources to brain predictions
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Tasks affect processing

180

Çukur, Tolga, Shinji Nishimoto, Alexander G. Huth, and Jack L. Gallant. "Attention during natural vision warps semantic representation across the human brain." Nature neuroscience 16, no. 6 (2013): 763-770.

• Stimuli: natural movies

• Task: visual search for vehicles or humans

• Stimulus representation: object and action labels 
from WordNet

• Brain recording & modality: fMRI, vision

Category-based 
attention during 
natural vision alters 
representation of both 
attended and 
unattended categories

https://www.nature.com/articles/nn.3381
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Tasks affect processing

bearX
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Systematic difference 
due to different 
question tasks

Attention emphasizes task-relevant information

Mechanism? 

181

Toneva, Mariya, Otilia Stretcu, Barnabás Póczos, Leila Wehbe, and Tom M. Mitchell. "Modeling task effects on meaning representation in the brain via zero-shot meg prediction." Advances in Neural Information Processing Systems 33 (2020): 5284-5295.

Can we model as a function 
of the task AND stimulus?

https://proceedings.neurips.cc/paper/2020/file/38a8e18d75e95ca619af8df0da1417f2-Paper.pdf
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Tasks affect processing

question task effect                              word 
effect

significant 
prediction 

performance

182

Toneva, Mariya, Otilia Stretcu, Barnabás Póczos, Leila Wehbe, and Tom M. Mitchell. "Modeling task effects on meaning representation in the brain via zero-shot meg prediction." Advances in Neural Information Processing Systems 33 (2020): 5284-5295.

The end of 
semantic 
processing of a 
word is task-
dependent

• Stimuli: concrete nouns + line 
drawings

• Task: answer Yes/No 
questions about noun

• Stimulus representation: 
human judgments

• Brain recording & modality: 
MEG, reading

https://proceedings.neurips.cc/paper/2020/file/38a8e18d75e95ca619af8df0da1417f2-Paper.pdf
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Tasks affect processing

Hollenstein, Nora, Marius Tröndle, Martyna Plomecka, Samuel Kiegeland, Yilmazcan Özyurt, Lena A. Jäger, and Nicolas Langer. "Reading task classification using EEG and eye-tracking data." arXiv preprint arXiv:2112.06310 (2021).

• Stimuli: sentences

• Task: searching for specific relations

• Stimulus representation: word embeddings

• Brain recording & modality: EEG, reading

Possible to predict whether a 
person is passively reading or 
performing a task with the text 
based on EEG recordings

https://arxiv.org/pdf/2112.06310.pdf
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Tasks affect processing

Wang, Aria, Michael Tarr, and Leila Wehbe. "Neural taskonomy: Inferring the similarity of task-derived representations from brain activity." Advances in Neural Information Processing Systems 32 (2019).

• Stimuli: images of natural scenes

• Stimulus representation: task-optimized 
CNNs for a range of tasks 

• Brain recording & modality: fMRI, vision

Semantic Low-dim. Geometric
2D 3D

Vision tasks with higher 
transferability make similar 
predictions for brain responses 
from different regions

https://proceedings.neurips.cc/paper/2019/hash/f490c742cd8318b8ee6dca10af2a163f-Abstract.html
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Oota, Subba Reddy, Jashn Arora, Veeral Agarwal, Mounika Marreddy, Manish Gupta, and Bapi Raju Surampudi. "Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI Brain Activity?." arXiv 
preprint arXiv:2205.01404 (2022).

Tasks affect processing

• Stimuli: passages and narratives

• Stimulus representation: task-optimized NLP models for a 
range of tasks

• Brain recording & modality: fMRI, reading & listening of 
different stimuli

Reading fMRI best explained by 
coref. resolution, NER, shallow 
syntax parsing
Listening fMRI best explained by 
paraphrasing, summarization, 
NLI

https://arxiv.org/pdf/2205.01404.pdf
https://arxiv.org/pdf/2205.01404.pdf
https://arxiv.org/pdf/2205.01404.pdf
https://arxiv.org/pdf/2205.01404.pdf
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Tasks affect processing

Aw, K.L., and Mariya Toneva. Training language models to summarize narratives 
improves brain alignment" ICLR 2023

• Stimuli: one chapter of Harry Potter

• Stimulus representation: summarization-
optimized language models

• Brain recording & modality: fMRI, reading

brain alignment (Pearson correlation)

Model trained with
language modeling

Model trained to
summarize narratives

inputinput

activations activations

book
chapter

Training language models to 
summarize narratives improves 
brain alignment, especially 
during important narrative 
elements (Characters, 
emotions, etc.)

https://arxiv.org/abs/2212.10898
https://arxiv.org/abs/2212.10898
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Challenges in using DL for cognitive modeling

• Not designed to specifically model brain processing

• Training DL models using brain recordings

• Task-based modeling

• Can be difficult to interpret due to multiple sources of information

• Disentangling contributions of different info sources to brain predictions
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Disentangling contributions of different info sources to 
brain predictions

“Mary finished the 
apple”

supra-word meaning may 
contain concept of:

- eating
- apple core
- …

supra-word 
meaning

Isolating supra-word meaning is a 
type of intervention

188

Toneva, Mariya, Tom M. Mitchell, and Leila Wehbe. "Combining computational controls with natural text reveals aspects of meaning composition." Nature Computational Science (2022)..

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912822/
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Disentangling contributions of different info sources to 
brain predictions

full context supra-word 

189

Bilateral PTL and ATL 
process supra-word 
meaning

Word-level information 
important for prediction 
of most language regions

• Stimuli: one chapter of Harry Potter

• Stimulus representation: disentangled 
embeddings from pretrained NLP models

• Brain recording & modality: fMRI & MEG, reading

Toneva, Mariya, Tom M. Mitchell, and Leila Wehbe. "Combining computational controls with natural text reveals aspects of meaning composition." Nature Computational Science (2022)..

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912822/
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Disentangling contributions of different info sources to 
brain predictions

190

Jain, Shailee, Vy Vo, Shivangi Mahto, Amanda LeBel, Javier S. Turek, and Alexander Huth. "Interpretable multi-timescale models for predicting fMRI responses to continuous natural speech." Advances in Neural Information Processing Systems 33 (2020): 13738-
13749.

Figures provided by Shailee Jain

• Stimuli: story

• Stimulus representation: multi-
timescale NLP model

• Brain recording & modality: fMRI, 
listening

Utilizing an NLP model that 
explicitly represents different 
timescale of information 
allows the voxel-wise 
estimation of the preferred 
timescales

https://proceedings.neurips.cc/paper/2020/hash/9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html
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Disentangling contributions of different info sources to 
brain predictions

191

Reddy, Aniketh Janardhan, and Leila Wehbe. "Can fMRI reveal the representation of syntactic structure in the brain?." Advances in Neural Information Processing Systems 34 (2021): 9843-9856.

Syntactic structure-based 
features explain additional 
variance in language regions 
over complexity metrics

Regions predicted by syntactic 
and semantic are difficult to 
distinguish

• Stimuli: one chapter of Harry Potter

• Stimulus representation: syntactic tree 
representations & pretrained NLP model

• Brain recording & modality: fMRI, reading

https://proceedings.neurips.cc/paper/2021/file/51a472c08e21aef54ed749806e3e6490-Paper.pdf
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Disentangling contributions of different info sources to 
brain predictions

192

Caucheteux, Charlotte, Alexandre Gramfort, and Jean-Remi King. "Disentangling syntax and semantics in the brain with deep networks." In International Conference on Machine Learning, pp. 1336-1348. PMLR, 2021.

• Stimuli: story

• Stimulus representation: pretrained NLP 
models

• Brain recording & modality: fMRI, listening

Compositional 
representations recruit a 
wider cortical network than 
word-level representations

Syntax and semantics not 
associated with separate 
modules

http://proceedings.mlr.press/v139/caucheteux21a/caucheteux21a.pdf
http://proceedings.mlr.press/v139/caucheteux21a/caucheteux21a.pdf
http://proceedings.mlr.press/v139/caucheteux21a/caucheteux21a.pdf
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Disentangling contributions of different info sources to 
brain predictions

193

Kumar, Sreejan, Theodore R. Sumers, Takateru Yamakoshi, Ariel Goldstein, Uri Hasson, Kenneth A. Norman, Thomas L. Griffiths, Robert D. Hawkins, and Samuel A. Nastase. "Reconstructing the cascade of language processing in the brain using the internal 
computations of a transformer-based language model." bioRxiv (2022).

• Stimuli: story

• Stimulus representation: pretrained NLP model

• Brain recording & modality: fMRI, listening

Decomposing NLP 
embeddings into attention 
heads reveals correlations 
between syntactic 
computations and prediction 
of fMRI recordings

https://www.biorxiv.org/content/10.1101/2022.06.08.495348v1.abstract
https://www.biorxiv.org/content/10.1101/2022.06.08.495348v1.abstract
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Disentangling contributions of different info sources to 
brain predictions

• Stimuli: story

• Stimulus representation: pretrained NLP model

• Brain recording & modality: fMRI, listening

Oota, S., Manish Gupta, and Mariya Toneva. "Joint processing of linguistic properties in brains and language models" arXiv (2022).

fMRI

Naturalistic 
stimulus

This is Los 
Angeles. And it's 
the …

Language 
model

Linguistic 
property

Original brain 
alignment

Significant 
difference 
⇒Ling. prop. 

affects 
alignment

Residual

Residual 
brain 

alignment

Syntactic properties 
contribute the most to the 
brain alignment trend across 
layers of language models

https://arxiv.org/pdf/2212.08094.pdf
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Complex stimulus representations make it difficult to 
infer the effect of a stimulus on multiple brain areas

195

“The problem is when 
the capsule moves from 
an elliptical orbit to a 
parabolic orbit.”

Variance 
in Brain 
area 1

Variance 
in Brain 
area 2

Variance in 
the 
stimulus

Variance in the 
stimulus 
representation
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Framework to determine whether a complex stimulus 
affects two brain areas in a similar way

196

Toneva, Mariya, Jennifer Williams, Anand Bollu, Christoph Dann, and Leila Wehbe. "Same cause; different effects in the brain." Causal Learning and Reasoning (2022).

https://arxiv.org/pdf/2202.10376.pdf
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Framework reveals differences in processing across 
language network areas

197

Example of each type of effect in movie 
fMRI data

Toneva, Mariya, Jennifer Williams, Anand Bollu, Christoph Dann, and Leila Wehbe. "Same cause; different effects in the brain." Causal Learning and Reasoning (2022).

• Stimuli: movie

• Stimulus representation: pretrained NLP model

• Brain recording & modality: fMRI, view & listen

Encoding 
model perf. 
significant in 
all language 
areas

Framework reveals 
differences in processing 
across language network 
areas

https://arxiv.org/pdf/2202.10376.pdf
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Challenges in using DL for cognitive modeling

• Not designed to specifically model brain processing

• Training DL models using brain recordings

• Task-based modeling

• Can be difficult to interpret due to multiple sources of information

• Disentangling contributions of different info sources to brain predictions

198
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Agenda

• Introduction to Brain encoding and decoding [30 min]

• Stimulus Representations [1 hour]

• Coffee break [30 min]

• Deep Learning for Brain Decoding [1 hour 30 min]

• Lunch break [1 hour 30 min]

• Deep Learning for Brain Encoding [1 hour 30 min]

• Coffee break [30 min]

• Advanced Methods [1 hour 15 min]

• Summary and Future Trends [15 min]
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Outline

1. Summary
2. Future trends
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Summary
• Exciting times: publicly accessible neuroimaging data of various tasks starting to be avaliable 

now!
• Opportunities: 

• Data ahead of theory, so it’s an open field for theoretical and methodological innovation! 
• Encoding models can be interpreted as process models constraining brain-computational 

theories (Kriegeskorte and Douglas, 2019).
• Decoding models serve as a test for the presence of information in neural responses 

(Karamolegkou et al., 2023)
• Decoding is relevant for cognitive neuroscientists interested in how semantic information is 

represented in the brain. 
• Computational linguists are interested in the cognitive plausibility of distributional models. 

(Minnema & Herbelot, ACL 2019)
• DL is helpful in uncovering patterns in brain responses and may lead to theories of information 

organization in the brain.

• Challenges: 
• Hypothesis-driven data collection might be more helpful 
• Individual variability is the norm in neuroimaging data!
• Neuroimaging data is more complex, noisy as compared to classical datasets used by DL 

researchers
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Summary
• This Tutorial:
• Stimulus representation schemes

• Vision: CNN-based
• Language: Transformer-based

• Datasets available (Reading/Listening/Viewing tasks in EEG, MEG, fMRI)
• Decoding

• Word-level Universal Brain Decoder; Continuous Lang Decoding; Multi-view and 
Cross-view Decoding

• Encoding
• Classical findings; More recent DL-based models

• Advance methods
• Tuning/Training DL models using brain recordings
• Task-based modeling
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Outline

1. Summary
2. Future trends: DNNs & The Brain
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• Brain response to a stimulus is multi-modal, multi-task related
• Cross-view and multi-view decoding (Oota et al 2022a)
• Visio-linguistic encoding (fusion of vision and language information) (Oota et al 2022b)
• Task-based representations give better brain alignment (Neural Taskonomy: Oota et al 2022c)
• Multimodal foundation model (Fei et al 2022)

DNNs & The Brain: Multi-modal, Multi-task 

Fei, Lu, Gao et al (2022). Towards artificial general intelligence via a multimodal foundation model. Nature Communications 13:3094 
doi.org/10.1038/s41467-022-30761-2



• DL models of encoding and decoding have not yet been put through the brain-
damage experiments. Ex. Semantic Dementia

DNNs & Brain Damage 

Snowden, Harris, Thompson, Kobylecki, Jones, Richardson, Neary (2018). Semantic dementia and the left and right temporal lobes, Cortex, 107(188-203).
https://doi.org/10.1016/j.cortex.2017.08.024.

Rt Ant Temporal Lobe 
Damage (Patient 8)

Animal habitat task. 
The patient is asked: 

Where would you find 
this?

Do DL Models exhibit 
such degradation 
with damage to 

units?
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• How do multilingual participants represent information?
• Different language families and typologies (verb-framed vs satellite
• Multiple scripts

• How do brain activations align to modern LLMs that perform language 
translation among multiple languages apparently seamlessly?

• Bi/Multilingual Advantage and what does it mean for DL models?
• studies have shown superior executive function (inhibitory control), memory in 

multilingual participants 
• Potential representational differences in simultaneous and sequential 

multilinguals

• Link between Language and Cognition
• What can DL models contribute to Bi/Multilingual Literature? 

207
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A big thank you!

Tutorial, Code and Material:

Material from IJCAI 2023 Tutorial would be uploaded soon!

(Past): Deep Learning for Brain Encoding and Decoding, Cogsci-2022 

https://tinyurl.com/DL4Brain

(Past): Language and the Brain: Deep Learning for Brain Encoding and Decoding, IJCNN 2023

https://tinyurl.com/DLBrainIJCNN2023

https://tinyurl.com/DL4Brain
https://tinyurl.com/DLBrainIJCNN2023


Thanks!

• Questions
• subba-reddy.oota@inria.fr

• gmanish@microsoft.com

• raju.bapi@iiit.ac.in

• mtoneva@mpi-sws.org

• Connect with us:
• https://www.linkedin.com/in/subba-reddy-oota-11a91254/

• http://aka.ms/manishgupta, https://sites.google.com/view/manishg/

• https://sites.google.com/view/bccl-iiith/home

• http://www.mtoneva.com

IJCAI 2023: DL for Brain Encoding and Decoding 210

mailto:subba-reddy.oota@inria.fr
mailto:gmanish@microsoft.com
mailto:raju.bapi@iiit.ac.in
mailto:mtoneva@mpi-sws.org
https://www.linkedin.com/in/jashn-arora
http://aka.ms/manishgupta
https://sites.google.com/view/manishg/
https://sites.google.com/view/bccl-iiith/home
http://www.mtoneva.com/

	Slide 1: Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding
	Slide 2: Agenda
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: Agenda
	Slide 6: Neuroscience
	Slide 7: Brain encoding and decoding in cognitive neuroscience
	Slide 8: Brain encoding and decoding
	Slide 9: Techniques for studying the brain function
	Slide 10: fMRI
	Slide 11: Computational Cognitive Science Research goals
	Slide 12: Computational Cognitive Science Research goals
	Slide 13: Agenda
	Slide 14: Types of stimuli and popular datasets
	Slide 15: Forms of stimulus presentation and data collection
	Slide 16: Text Stimulus Datasets 
	Slide 17: Data for concrete nouns from sighted/blind subjects
	Slide 18: 70 - Italian word stimuli fMRI data
	Slide 19: Zurich Cognitive Language Processing Corpus (ZuCo)
	Slide 20: Visual Stimulus Datasets 
	Slide 21: Visual Binary Patterns
	Slide 22: Seen and imagined objects
	Slide 23: BOLD5000
	Slide 24: Algonauts
	Slide 25: Audio Stimulus Datasets 
	Slide 26: Imagining common scenarios
	Slide 27: Narratives
	Slide 28: Video Stimulus Datasets 
	Slide 29: Japanese Ads
	Slide 30: Algonauts 2021
	Slide 31: Other Multimodal Stimulus Datasets 
	Slide 32: Concrete nouns with line drawings
	Slide 33: Word+Picture, Sentences, Word Clouds, Passages
	Slide 34: fNIRS with audio-visual stimuli
	Slide 40: Agenda
	Slide 41: Agenda
	Slide 42: Stimulus Representations
	Slide 43: Agenda
	Slide 44: Text Stimulus Representations
	Slide 45: Basic NLP Representations for Word Stimuli
	Slide 46: Basic NLP Representations for Word Stimuli
	Slide 47: Discourse features (for Harry Potter dataset)
	Slide 48: DL Representations: Using embeddings for word stimuli
	Slide 49: DL Representations: Using longer context for word stimuli
	Slide 50: DL Representations: Using sentence embeddings
	Slide 51: DL Representations: Transformer-based methods for text stimuli (Layer #, context length, architecture)
	Slide 52: DL Representations: Transformer-based methods for text stimuli (NLP task finetuning and scrambled LM)
	Slide 53: DL Representations: Transformer-based methods for text stimuli (NLP task finetuning)
	Slide 54: DL Representations: Transformer-based methods for text stimuli (Multi-task setup)
	Slide 55: DL Representations: Comparing Transformers and extracting syntax vs semantics
	Slide 56: Experiential attributes model for text stimuli
	Slide 57: Binary attribute representations
	Slide 58: Agenda
	Slide 59: Visual Stimuli
	Slide 60: Visual Stimuli: Gabor wavelet pyramid
	Slide 61: Visual Stimuli: HMAX model
	Slide 62: Visual Stimuli: Convolutional Neural Networks (CNNs)
	Slide 63: Visual Stimuli: Object Recognition with Word embeddings
	Slide 64: Visual Stimuli: Semi-supervised CNNs
	Slide 65: Visual Stimuli: Convolutional LSTM Autoencoder
	Slide 66: Latent Diffusion Models
	Slide 67: Agenda
	Slide 68: Audio Stimuli
	Slide 69: Agenda
	Slide 70: Multimodal Stimulus Representations
	Slide 71: Multimodal Stimuli: Visio-linguistic representations
	Slide 72: Agenda
	Slide 73: References
	Slide 74: References
	Slide 75: References
	Slide 76: References
	Slide 77: References
	Slide 78: Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding
	Slide 79: Agenda
	Slide 80: Agenda
	Slide 81: Outline
	Slide 82: Encoding vs. Decoding
	Slide 83: What is Brain Decoding?
	Slide 84: Linguistic Decoding
	Slide 85: Outline
	Slide 86: Linear Decoder Models
	Slide 87: Non-Linear Decoder
	Slide 88: Evaluating Decoding Models: Pairwise Accuracy
	Slide 89: Evaluating Decoding Models: Rank Accuracy
	Slide 90: Representational Similarity Matrix (RSM)
	Slide 91: Representational Dissimilarity Matrix (RDM)
	Slide 92: Representation Similarity Analysis
	Slide 93: Outline
	Slide 94: Linguistic Brain Decoding
	Slide 95: Classical Decoders
	Slide 96: Toward a universal decoder
	Slide 97: Dataset Details (Experiment-1)
	Slide 98: Dataset Details (Experiment-1)
	Slide 99: Dataset Details (Experiments 2 and 3)
	Slide 100: Informative Voxel Selection
	Slide 101: Pairwise and Rankwise Results
	Slide 102: Distribution of Informative Voxels
	Slide 103: Insights
	Slide 104: Linguistic Brain Decoding
	Slide 105: Linking artificial and human neural representations of language
	Slide 106
	Slide 107
	Slide 108: Custom Tasks
	Slide 109: Brain decoding performance
	Slide 110: Brain decoding performance trajectories over fine-tuning time
	Slide 111: Summary
	Slide 112: Linguistic Brain Decoding
	Slide 113
	Slide 114
	Slide 115
	Slide 116: Summary
	Slide 117: Linguistic Brain Decoding
	Slide 118: Multi-view and Cross-ViewBrain Decoding
	Slide 119: Multi-view decoding
	Slide 120: Multi-view decoding results
	Slide 121: Distribution of Informative Voxels
	Slide 122: Cross-view Decoding
	Slide 123: Cross-view Decoding results
	Slide 124: Summary
	Slide 125: Linguistic Brain Decoding
	Slide 126: Agenda
	Slide 127: References
	Slide 128: References
	Slide 129: Deep Learning for Brain Encoding and Decoding
	Slide 130: Agenda
	Slide 131: Agenda
	Slide 132: Mechanistic understanding of information processing in the brain: 4 big questions
	Slide 133: Encoding models have a causal interpretation
	Slide 134: Classic findings using encoding models
	Slide 135: Classic encoding model finding: Language
	Slide 136: Classic encoding model finding: Language
	Slide 137: Classic encoding model finding: Vision
	Slide 138: Classic encoding model finding: Audio
	Slide 139: Deep learning models enable data-driven encoding models for naturalistic stimuli
	Slide 140: Data-driven encoding models evaluate the relationships between brains and deep learning models
	Slide 141: Encoding: training and evaluation
	Slide 142: Encoding: training and evaluation
	Slide 143: Encoding: training setup
	Slide 144: Encoding: training independent models
	Slide 145: Encoding: fMRI specifics
	Slide 146: Encoding: evaluation setup
	Slide 147: Encoding: evaluation metrics
	Slide 148: Encoding: statistical significance
	Slide 149: Encoding: performance visualization
	Slide 150: Agenda
	Slide 151: More recent work utilizing progress in DL for encoding
	Slide 152: Language: work utilizing DL progress
	Slide 153: Audio: work utilizing DL progress
	Slide 154: Language: work utilizing DL progress
	Slide 155: Language: work utilizing DL progress
	Slide 156: Language: work utilizing DL progress
	Slide 157: Language: work utilizing DL progress
	Slide 158: Recent work utilizing progress in DL for encoding
	Slide 159: Vision: work utilizing DL progress
	Slide 160: Vision: work utilizing DL progress
	Slide 161: Vision: work utilizing DL progress
	Slide 162: Vision: work utilizing DL progress
	Slide 163: Recent work utilizing progress in DL for encoding
	Slide 164: Audio: work utilizing DL progress
	Slide 165: Audio: work utilizing DL progress
	Slide 166: Audio: work utilizing DL progress
	Slide 167: Agenda
	Slide 168: Deep Learning for Brain Encoding and Decoding
	Slide 169: Agenda
	Slide 170: Challenges in using DL for cognitive modeling
	Slide 171: Challenges in using DL for cognitive modeling
	Slide 172: Challenges in using DL for cognitive science
	Slide 173: Challenges in using DL for cognitive science
	Slide 174: Challenges in using DL for cognitive science
	Slide 175: Training DL models using brain recordings
	Slide 176: Training DL models using brain recordings
	Slide 177: Training DL models using brain recordings
	Slide 178: Training DL models using brain recordings
	Slide 179: Challenges in using DL for cognitive modeling
	Slide 180: Tasks affect processing
	Slide 181: Tasks affect processing
	Slide 182: Tasks affect processing
	Slide 183: Tasks affect processing
	Slide 184: Tasks affect processing
	Slide 185: Tasks affect processing
	Slide 186: Tasks affect processing
	Slide 187: Challenges in using DL for cognitive modeling
	Slide 188: Disentangling contributions of different info sources to brain predictions
	Slide 189: Disentangling contributions of different info sources to brain predictions
	Slide 190: Disentangling contributions of different info sources to brain predictions
	Slide 191: Disentangling contributions of different info sources to brain predictions
	Slide 192: Disentangling contributions of different info sources to brain predictions
	Slide 193: Disentangling contributions of different info sources to brain predictions
	Slide 194: Disentangling contributions of different info sources to brain predictions
	Slide 195: Complex stimulus representations make it difficult to infer the effect of a stimulus on multiple brain areas
	Slide 196: Framework to determine whether a complex stimulus affects two brain areas in a similar way
	Slide 197: Framework reveals differences in processing across language network areas
	Slide 198: Challenges in using DL for cognitive modeling
	Slide 199: Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding
	Slide 200: Agenda
	Slide 201: Outline
	Slide 202: Summary
	Slide 203: Summary
	Slide 204: Outline
	Slide 205: DNNs & The Brain: Multi-modal, Multi-task 
	Slide 206: DNNs & Brain Damage 
	Slide 207
	Slide 209: A big thank you!
	Slide 210: Thanks!

