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Agenda

* Introduction to Brain encoding and decoding [30 min]
* Stimulus Representations [1 hour]

e Coffee break [30 min]

* Deep Learning for Brain Decoding [1 hour 30 min]

* Lunch break [1 hour 30 min]

* Deep Learning for Brain Encoding [1 hour 30 min]

* Coffee break [30 min]

* Advanced Methods [1 hour 15 min]

 Summary and Future Trends [15 min]
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* Introduction to Brain encoding and decoding [30 min]
* Brain Encoding/Decoding: Techniques and Research Goals

* Introduction to popular datasets
e Text, Visual, Audio, Multi-modal
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Neuroscience

 Field of science that studies the structure and function of the nervous system of
different species.

* Involves answering interesting questions

How learning occurs during adolescence, and how it differs from the way adults learn and form
memories.

Which specific cells in the brain (and what connections they form with other cells), have a role in
how memories are formed.

How animals cancel out irrelevant information arriving from the senses and focus only on
information that matters.

How do humans make decisions.
How humans develop speech and learn languages.

* Neuroscientists study diverse topics that help us understand how the brain and
nervous system work.
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Brain encoding and decoding in cognitive neuroscience

¢ Encoding is the process of learning the A
mapping e from the stimuli S to the
neural activation F.

encoding
S — >

inanimate | 0
] decoding

® U Si ng featu r-e e ngg (A) Or- dee p |ea r-n i ng ( D) stimulus features mapping neural variable

* Decoding constitutes learning mapping
d, which predicts stimuli S back from
the brain activation F.

e Oftentimes, we predict a stimulus
representation R rather than actually
reconstructing S.

* Other forms of encoding/decoding

* (B): Map participants’ behaviour to neural
variables.

* (C): Mapping between activity in different
brain regions.

stimulus features mapping neural variable

Ivanova, Anna A., Martin Schrimpf, Stefano Anzellotti, Noga Zaslavsky, Evelina Fedorenko, and Leyla Isik. "Is it that simple? Linear mapping models in cognitive neuroscience." bioRxiv (2021).
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Brain encoding and decoding

* For both encoding and decoding, the first step is to learn a stimulus
representation R of the stimuli S at the train time.

* F' is the brain response.

* Next

* For encoding, a regression function e: R = F is trained.
* For decoding, a function d: F — R is trained.

* These functions e and d can then be used at test time to process new stimuli
and brain activations, respectively.

IJCAI 2023: DL for Brain Encoding and Decoding



Techniques for studying the brain function

e fMRI: high spatial but low time resolution.

e | - « Good to study a specific location in the brain
“ T 4 * Unsuitable for sentence-level analysis. fMRI
= takes about two seconds to complete a scan.
s 14 (ECoG - This is far lower than the speed at which
5 c humans can process language.
§ = _8 * Cannot capture syntactic information (Gauthier
s 9 MEA and Levy, 2019)
. — _1 == . . . .
B C — e EEG: high time but low spatial resolution.
Q > QO invasive : .. .
ol - -+ . * Can preserve rich syntactic information (Hale et
@ non-invasive al., 2018)
.01 e e e e e e e e e But cannot use for source analysis.
ot Te'n(:loral res;jution (5)1 ) * fNIRS: compromise option
i * Time resolution better than fMRI

Single Micro-Electrode (ME), Micro-Electrode array (MEA), Electro-Cortico  Spatial resolution better than EEG
Graphy (ECoG), Positron emission tomography (PET), functional MRI e Balance of spatial and temporal resolution may
(fMRI), Magneto-encephalography (MEG), Electro-encephalography (EEG), not be enough to compensate for the loss in
Near-Infrared Spectroscopy (NIRS) both.

Vogel, Jérn Sarpi Haddadin, Beata Jarosiewicz, John D. Simeral, Daniel Bacher, Leigh R. Hochberg, John P. Donoghue, and Patrick van der Smagt. "An assistive decision-and-control architecture for force-sensitive hand—arm systems driven by human—machine interfaces." The International
Journal of Robotics Research 34, no. 6 (2015): 763-780.
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* No injections, surgery, the ingestion of substances, or
exposure to ionizing radiation.

* The primary form of fMRI uses the blood-oxygen-level
dependent (BOLD) contrast, discovered by Seiji Ogawa in

1990.
* Measures brain activity by detecting changes associated with
blood flow.
* When an area of the brain is in use, blood flow to that region
also increases.

* Hemodynamic response (HRF)
* |t takes a while for the vascular system to respond to the brain's
need for glucose.
* Blood flow lags the neuronal events triggering it by about 5

An fMRI image with yellow areas secon dS.
showing increased activity
compared with a control condition
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Computational Cognitive Science Research goals

* Predictive Accuracy

* Compare feature sets: Which feature set provides the most COMpED COMPANG

feature sets

faithful reflection of the neural representational space?

* Test feature decodability: “Does neural data Y contain
information about features X?”

decode features from neural data

* Build accurate models of brain data: Aim is to enable bl maimally acourate
simulations of neuroscience experiments. Y

models of brain activity
* Interpretability

Examine individual features: Which features contribute the

most to neu ral activity? examine individual features
* Test correspondences between representational spaces
* “CNNs vs ventral visual stream” or “Two text representations” test representational geometry

* Interpret feature sets

* Do features X, Fenerated by a known process, accurately describe the :
space of neural responses Y? Interprotioature;ssts

* Do voxels respond to a single feature or exhibit mixed selectivity?

* How does the mapping relate to other models or theories of predictive accuracy
brain function?

interpretability

lvanova, Anna A., Martin Schrimpf, Stefano Anzellotti, Noga Zaslavsky, Evelina Fedorenko, and Leyla Isik. "Is it that simple? Linear mapping models in cognitive neuroscience." bioRxiv (2021).
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Computational Cognitive Science Research goals

* Biological plausibility -

feature sets
 Simulate linear readout

decode features from neural data

* If the features can be extracted with a linear mapping ot ety scourne
model, it means that they require few additional models of brain activity

computations in order to be used downstream.
* Incorporate measurement-related considerations

examine individual features

i i test tational t
* Rather than assuming a fixed HRF across voxels and/or oet representational geomstry

conditions, what are better ways?

interpret feature sets

incorporate physiological properties
of the measurements

simulate downstream
neural readout

predictive accuracy

interpretability

biological plausibility

lvanova, Anna A., Martin Schrimpf, Stefano Anzellotti, Noga Zaslavsky, Evelina Fedorenko, and Leyla Isik. "Is it that simple? Linear mapping models in cognitive neuroscience." bioRxiv (2021).
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Agenda

* Introduction to Brain encoding and decoding [30 min]
* Introduction to Brain Encoding/Decoding and applications

* Introduction to popular datasets
e Text, Visual, Audio, Multi-modal
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Types of stimuli and popular datasets

e Text (Words, Sentences, Paragraphs): Harry Potter Story, ZUCO EEG, Question-
Answering MEG.

* Visual: Binary visual patterns, Natural Images (Vim-1), BOLD5000, Algonauts
and SS-fMRI.

e Audio: Alice’s Adventures in Wonderland, Narratives, The Moth Radio Hour,
Audio stories.

* Videos: BBC’s Doctor Who, Japanese Ads, Pippi Langkous, Algonauts.

e Other Multimodal Stimuli: Words + line drawing of concept named by each
word, Pereira.

IJCAI 2023: DL for Brain Encoding and Decoding 14



Forms of stimulus presentation and data collection

* Type: fMRI, EEG, MEG, ...

* TR: Sampling time.

* Fixation points: location, color, shape.

* Form of stimuli presentation: text, video, audio, images.

* Task: question answering, property generation, understanding, ...
* Time given to participants: 1 minute to list properties, ...

* Type of participants: males/females, sighted/blind, ...

* Number of times the response to stimuli was recorded.

* Language

IJCAI 2023: DL for Brain Encoding and Decoding
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Text Stimulus Datasets
Dstoset | Type | tongusge |Sumuus | dsubjecs | Parodigm  |ske |Tak

Wehbe et al., 2014

fMRI

English

Chapter 9 of Harry Potter
and the Sorcerer's Stone

9

Reading stories

5000 word chapter
was presented in 45
minutes.

Story understanding

Handjaras et al., 2016

Anderson et al., 2017

Zurich Cognitive
Language Processing
Corpus (ZuCo):
Hollenstein et al., 2018

fMRI

fMRI

EEG and
eye-tracking

Italian

Italian

English

Verbal, pictorial or

auditory presentation of

40 concrete nouns

70 concrete and abstract
nouns from law/music.

Sentences from movie
reviews or Wikipedia

20

Reading, viewing
or listening

Reading

Reading natural
sentences

40 nouns * 4 times.

70 nouns * 5 times.

21,629 words in
1107 sentences and
154,173 fixations

Property Generation

Imagine a situation
that they personally
associate with the
noun

Rate movie quality,
answer control
guestions, check for
existence of a relation

Anderson et al., 2019

BCCWIJ-EEG: Oseki and
Asahara, 2020

Deniz et al., 2019

fMRI

EEG

fMRI

English

Japanese

English

240 active voice sentences

describing everyday
situations

20 newspaper articles

Subset of Moth Radio Hour.

11 stories

14

40

9
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Reading

Reading

Reading

240 sentences seen
12 times (by 10
subjects) and 6 times
(by 4 subjects)

1 time reading for
~30-40 minutes

11 10- to 15 min
stories presented
twice word by word

Passive reading

Passive reading

Passive reading and
Listening
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Data for concrete nouns from sighted/blind subjects

 Participants were asked to verbally
enumerate in one minute the
properties (features) that describe

Verbal Visual Form

the entities the words refer to. (Sighted Subjects)
4 groups of participants i e
* 5 sighted individuals were presented eictoral Visual Form ~

with a pictorial form of the nouns (Sighted Subjects)

5 sighted individuals with a verbal visual
(i.e., written Italian words) form

« 5 sighted individuals with a verbal Y Eindand Sae (A &t
auditory (i.e., spoken Italian words) form
5 congenitally blind with a verbal e >

auditory form.

andjaras, Giacomo. Emiliano Ricciardi, Andrea Leo, Alessandro Lenci, Luca Cecchetti, Mirco Cosottini, Giovanna Marotta, and Pietro Pietrini. "How concepts are encoded in the human brain: a modality independent, category-based cortical organization of semantic knowledge.” Neuroimage 135
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70 - Italian word stimuli fMRI data

* Taxonomic categories in law and music domain

Ur-abstract: that are classified as abstract in
WordNet

Attribute: A construct whereby objects or
individuals can be distinguished

Communication: Something that is communicated
by, to or between groups

Event/action: Something that happens at a given
place and time

Person/Social role: Individual, someone, somebody,

mortal

Location: Points or extents in space
Object/Tool: A class of unambiguously concrete

nouns

LAW MUSIC
Ur-abstracts giustizia justice musica music
liberta’ liberty blues blues
legge law jazz jazz
corruzione corruption canto singing
refurtiva loot punk punk
Attribute giurisdizione jurisdiction sonorita’ sonority
cittadinanza citizenship ritmo rhythm
impunita’ impunity melodia meledy
legalita’ legality tonality’ tonality
illegalita illegality intonazione pitch
Communication divieto prohibition canzone song
verdetto verdict pentagramma  stave
ordinanza decree ballata ballad
addebito accusation ritornello refrain
ingiunzione injunction sinfonia symphony
Event/action arresto arrest concerto concert
processo trial recital recital
reato crime assolo solo
furto theft festival festival
assoluzione acquital spettacolo show
Person/Social-role  giudice judge musicista musician
ladro thief cantante singer
imputato defendant compositore composer
testimone witness chitarrista guitarist
avvocato lawyer tenore tenor
Location tribunale court/tribunal  palco stage
carcere prison auditorium auditorium
questura poliee-statieon  discoteca disco
penitenziario  penitentiary conservatorio  conservatory
patibolo gallows teatro theatre
Object/Tool manette handcuffs violino violin
toga robe tamburo drum
manganello truncheon tromba trumpet
cappio noose metronomo metronome
grimaldelle skeleton-key radio radio

Anderson, Andrew J., Douwe Kiela, Stephen Clark, and Massimo Poesio. "Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns." Transactions of the Association for Computational Linguistics 5 (2017): 17-30.
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Zurich Cognitive Language Frocessing
Corpus (ZuCo)

Task 1 Normal reading (Sentiment) Task 2 Normal reading (Wikipedia) Task 3 Task-specific reading
(Wikipedia)

Positive, negative or neutral sentences from movie

Material . Wikipedia sentences containing specific relations WIk'PEdla sentences containing specific
reviews relations

Examble “The film often achieves a mesmerizing poetry.” “Talia Shire (born April 25, 1946) is an American actress of  “Lincoln was the first Republican

P (positive) Italian descent.” (relations: nationality, job title) president.” (relation: political affiliation)

Read the sentences, rating the quality of the movie . Mark whether a specific relation occurs in

Task Read the sentences, answer control questions .
based on the sentence read the given sentence or not

Control “Based on the previous sentence, how would you rate “Talia Shire was a ...1) singer 2) actress 3) director” "Does this sentence contain the political

question this movie from 1 (very bad) to 5 (very good)?” g affiliation relation? 1) Yes 2) No”

» Personal reading speed.

« Sentences were presented to the subjects in a naturalistic reading scenario
« Complete sentence is presented on the screen

« Subjects read each sentence at their own speed, i.e., the reader determines for
how long each word is fixated and which word to fixate next.

Hollenstein, Nora, Jonathan Rotsztejn, Marius Troendle, Andreas Pedroni, Ce Zhang, and Nicolas Langer. "ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading." Scientific data 5, no. 1 (2018): 1-13.
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Visual Stimulus Datasets
s _____Jowe____owwte___Jos Jownten__om ___________ [k ___

Thirion et al., 2006

fMRI

Rotating wedges,
expanding/contracting
rings, rotating Gabor
filters, grid

Vlewmg visual
patterns

Wedges/rings for 8 times, 36 Gabor filters for

4 times, grid 36 times

Passive viewing,
imagine one of the 6
domino stimuli when
prompted to.

Vim-1: Kay et al., 2008

fMRI

Sequences of natural
photos

Viewing natural
images

Each subject viewed 1750 (Stage 1)+ 120
(Stage 2) novel natural images

Passive viewing

Horikawa et al., 2017

BOLD5000: Chang et al.,
2019

Algonauts: Cichy et al.,
2019

fMRI

fMRI

fMRI (EVC and
IT)/MEG (early and
late in time)

Object images

5254 images depicting
real-world scenes

Object images

15

Viewing and
Reading

Viewing natural
images

Viewing object
images

Each subject: (1) Image presentation: 1,200
images from 150 object categories and 50
images from 50 object categories; (2)
Imagery: 10 times.

~20 hours of MRI scans per each of four
participants

92 silhouette object images and 118 images
of objects on natural background

One-back repetition
detection task,
imagine object images
pertaining to the
category

Passive viewing

Passive viewing

Natural Scenes Dataset:
Allen et al., 2022

THINGS: Hebart et al.,
2023

fMRI

fMRI/EEG

73000 natural scenes

31188 natural images
across 1,854 object
concepts.

Viewing natural
scenes

Viewing natural
images

~73000 distinct natural scene images from
MSCOCO.

fMRI: 3 Participants. 8,740 unique images.
720 objects. MEG: 4 Participants. 22,448
unique images. 1,854 objects

IJCAI 2023: DL for Brain Encoding and Decoding

Passive viewing

oddball detection task
(synthetic image).
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Visual Binary Patterns

a) Retinotopic mapping experiment:
flickering rotating wedges and
expanding/contracting rings.

b) Domino experiment: groups of
quickly rotating Gabor filters in an
event-related design. Disks appeared
simultaneously on the left and right
side of the visual field.

c) 6 different patterns in each hemifield.

d) Subject was presented with the same
rid. When the central fixation cross
ﬁeft) became a left arrow (middle) or
a right arrow (right), the subject had
to imagine one of the 6 patterns
resented previously, either in the
eft or right hemifield.

i atterns.” Neuroimage 33, no. 4 (2006): 1104-1116.

Thirion, Bertrand, Edouard Duchesnay, Edward Hubbard, Jessica Dubois, Jean-Baptiste Poline, Denis Lebihan, and Stanislas Dehaene. "Inverse retinotopy: inferring visual ¢
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Seen and imagined objects

« Two fMRI experiments: An image

presentation experiment, and an imagery a Repetition
experiment.
* Image presentation experiment % i
* Subjects performed a one-back repetition g -
detection task on the images, responding with -
S 9s 9s 9s 9s
a button press for each repetition. T >
. 2 i t
* Imagery experiment dhy

« Cue stimuli composed of an array of object
names were visually presented.

« The onset and the end of the imagery periods
were signalled by auditory beeps.

 After the first beep, the subjects were
instructed to imagine as many object images
as possible pertaining to the category
iIndicated by red letters.

* They continued imagining with their eyes
closed (15 s) until the second beep.

« Subjects were then instructed to evaluate the
vividness of their mental imagery (3 s).

Horikawa, Tomoyasu, and Yukiyvasu Kamitani. "Generic decoding of seen and imagined objects using hierarchical visual features." Nature communications 8, no. 1 (2017): 1-15.
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BOLDS5000

« ~20 hours of MRI scans per each of the four participants.
* 4,916 unique iImages were used as stimuli from 3 image sources

Scene Images COCO Images ImageNet Images

Chang, Nadine, John A. Pyles, Austin Marcus, Abhinav Gupta, Michael J. Tarr, and Elissa M. Aminoff. "BOLD5000, a public fMRI dataset while viewing 5000 visual images." Scientific data 6, no. 1 (2019): 1-18.
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Algonauts

d Image Set Brain data
(examples) (MEG &fMRI RDMs)
?:0 — S cOMm
.§ E ”'.,'—’ sunn Q) + ' 3
How the brain E wm - ‘
processes everyday objects —
o]0)]
% Can your model C ~
7o " N —
“ predict this? =%
K- O wn
v ’ l_
‘sv/ e | b
(hA
A 9w r
-E s + held out
é o for testing

Training and Testing Material.

a) There are two sets of training data, each consisting of an image set and brain activity in RDM
format (for fMRI and MEG). Training set 1 has 92 silhouette object images, and training set 2 has
118 object images with natural backgrounds.

b) Testing data consists of 78 images of objects on natural backgrounds.

Cichy, Radoslaw Martilré.)Gemma Roig, Alex Andonian, Kshitij Dwivedi, Benjamin Lahner, Alex Lascelles, Yalda Mohsenzadeh, Kandan Ramakrishnan, and Aude Oliva. "The algonauts project: A platform for communication between the sciences of biological and atrtificial intelligence." arXiv preprint
arXiv:1905.05675 (2019).
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Audio Stimulus Datasets

Handjaras et al., fMRI  Italian Verbal, pictorial or auditory Reading, 40 nouns * 4 times. Property Generation
2016 presentation of 40 concrete viewing or

nouns listening
Huth et al., 2016 fMRI  English Eleven 10-minute stories 7 Listening 2 hours of stories from The Moth Radio Passive Listening

Hour

Brennan and Hale, EEG English Chapter one of Alice’s 33 Listening 2,129 words in 84 sentences. The entire 8 MCQ Question
2019 Adventures in Wonderland as experimental session lasted 1-1.5 h answering concerning the

rWn (inrlndinﬂ) contente of tho S:Qm‘
Anderson et al., fMRI  English One of 20 scenario names 26 Listening 20 scenario prompts displayed 5 times. Imagine themselves
2020 scenario personally experiencing

name common scenarios
Narratives: Nastase ~ fMRI  English 27 diverse naturalistic spoken 345 Listening 891 functional scans, totaling ~4.6 hours Passive Listening
et al.,, 2021 stories of unique stimuli (~43,000 words)
Natural Stories: fMRI  English Moth-Radio-Hour naturalistic 19 Listening 5 h 33 m (repeated twice). Each story is Passive Listening
Zhang et al., 2020 spoken stories 6 m 48 s avg or 2492 words.
The Little Prince: Li fMRI  English, Audiobook 112 Listening English audiobook is 94 minutes long. Passive Listening. 4 quiz
et al., 2021 Chinese, Chinese: 99min. French: 97 min. guestions.
French

MEG-MASC: MEG  English 4 English fictional stories: Cable 27 Listening Two hours of naturalistic stories. 208 Passive Listening

Gwilliams et al.,
2022

spool boy, LW1, Black willow,
Easy money.

MEG sensors.

IJCAI 2023: DL for Brain Encoding and Decoding

25



lmagining common scenarios

2. Participants individually rated their imagined

1. 26 participants vividly imagined and then verbally
scenarios on 20 experiential attributes

described 20 common scenarios
* N Participant 1 Participant 2
ﬁ(’o 2288

Dancing scenario Dancing scenario

® o ¢ Participant 26

oleh L ¢
CRVIE N
oyt X:)
NSNS

Participant 1 . Participant 2 . -
Dancing scenario Dancing scenario
My dauvghter iy o dancer, and we are going Being at a Bar Mitzvah dancing the Hora.
to- see her perform ot the Cultural Center.
(o] (=]
Resting scenario Resting scenario = =
After luncin | get sleepy, so- | go- Listen to- Laying in bed early in a beautiful spring = =
[} o

music n recliner and have o twenty morning listening to the birds singing.
T ,.332& ™ = e @ @ 20 attributes
| 2 g summarized
Festival scenario Festival scenario *r =~ by five icons
The Jazz festival -sitting owtside on oo nice  Park Avenue festival- walking up and down, A 3% for illustrative
summer evening with o glass of sangrios enjoying the music and the art. Q Q . purposes

* Participants underwent fMRI as they reimagined the scenarios when prompted by standardized cues.

« 20 Scenarios: resting, reading, writing, bathing, cooking, housework, exercising, internet, telephoning,
driving, shopping, movie, museum, restaurant, barbecue, party, dancing, wedding, funeral, festival.

20 attributes: bright, color, motion, touch, audition, music, speech, taste, head, upperlimb, lowerlimb,
body, path, landmark, time, social, communication, cognition, pleasant, unpleasant.

Anderson, Andrew James, Kelsey McDermott, Brian Rooks, Kathi L. Heffner, David Dodell-Feder, and Feng V. Lin. "Decoding individual identity from brain activity elicited in imagining common experiences." Nature communications 11, no. 1 (2020): 1-14.
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Narratives

a
Story Duration TRs Words Subjects
o
E "Pie Man" 07:02 282 957 82
WWMMWWVWW “Tunnel Under the World" 25:34 1,023 3,435 23
) T T T T “Lucy” 09:02 362 1,607 16
0 50 100 150 200
“Pretty Mouth and Green My Eyes” 11:16 451 1,970 40
© narrative features “Milky Way"” 06:44 270 1,058 53
)] .
3 semantic features "Slumlord” 15:03 602 2,715 18
E acoustic features "Reach for the Stars One Small Step at a Time" 13:45 550 2,629 18
“It's Not the Fall That Gets You" 09:07 365 1,601 56
) & “Merlin” .
goo (}(\o &e‘ 6‘0\\ . oo* & .\eb o .\\cb Qoé'é « Merlin 14:46 591 2,245 36
N S\ © R N N I G s "Sherlock” 17:32 702 2,681 36
“Schema" 2312 928 3,788 31
f T T T T T T T | seconds “Shapes” 06:45 270 910 59
15 16 17 18 19 20 21 22 23
I Y . Y TRs “The 21st Year" 55:38 2,226 8,267 25
10.0 A 13.0 4
i e “Pie Man (PNI)" 06:40 267 992 40
g H "Running from the Bronx (PNI)" 08:56 358 1,379 40
| ) — "I Knew You Were Black” 13:20 534 1,544 40
E )
4 T T . T T T r T , seconds The Man Who Forgot Ray Bradbury 13:57 558 2,135 40
0 50 100 150 200 250 300 350 400 459I'Rs Total: 4.6 hours 11,149 TRs 42,989 words
6 510 160 1%0 260 2%0 360 Total across subjects: 6.4 days 369,496 TRs 1,399,655 words

Nastase, Samuel A., Yun-Fei Liu, Hanna Hillman, Asieh Zadbood, Liat Hasenfratz, Neggin Keshavarzian, Janice Chen et al. "The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension." Scientific data 8, no. 1 (2021): 1-22.
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Video Stimulus Datasets
e e e o -

BBC’s Doctor Who: fMRI English Spatiotemporal visual Viewing episode 120.830 whole-brain volumes Passive
Seeliger et al., 2019 and auditory naturalistic videos (approx. 23 h) of single- viewing
stimuli (30 episodes of presentation data, and 1.178
BBC’s Doctor Who) volumes (11 min) of repeated
narrative short episodes (22
repetitions)
Japanese Ads: Nishida  fMRI Japanese 368 web and 2452 TV 40 and 28 for  Viewing Ads 7200 train and 1200 test fMRIs for Passive
et al., 2020 Japanese ad movies (15- web and TV web; fMRIs from 420 ads. viewing
30s) ads. 16 were
overlapped
Pippi Langkous: ECoG  The movie was 30 s excerpts of a feature 37 patients Viewing 6.5 min movie. Passive
Berezutskaya et al., originally in film (in total, 6.5 min viewing
2020 Swedish but long), edited together for
dubbed in Dutch a coherent story
Algonauts: Cichy et al., fMRI English 1000 short video clips 10 Viewing video 1000 short video clips (3 sec each) Passive
2021 clips viewing
Natural Short Clips: fMRI English Natural short movie clips 5 Watching natural 3870 responses per subject. Passive
Huth et al., 2022 short movie clips viewing
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Japanese Ads

* Two sets of movies were provided by NTT DATA
Corp: web and TV ads.

.. . . Categories Web ad movies TV ad movies
* Four types of cognitive labels associated with the Electronic & Procision . %
movie datasets Audiovisual 5 6
. e Appliance 16 23
* Scene descriptions Car 31 145
* Human judges create scene descriptions with 50+ words per 1s Food & Confectionery 7 369
scene. Beverage & Alcoholic drink 20 236
e Impression ratings tredical & Health 9 £
* Human rating on 30 factors for every 2s clip on a scale of 0-4. Sundries & Home equipment 10 254
» Ad effectiveness indices Garment/apparel 9 43
. . . . . Entertainment 42 237
* Click rate: fraction of viewers who clicked the frame of a movie Media & Education 41 12
and jumped to a linked web page Distribution & Retailer 12 112
* View completion rate: fraction of viewers who continued to Communication & Service 35 328
watch an ad movie until the end without choosing a skip House & Construction 9 90
option. Finance 9 145
Enterprise, Public service, & Others 34 91

* Ad preference votes

* Each tester was asked to freely recall a small number of
favorite TV ads from among the ads recently broadcasted.

* The total number of recalls of an ad was regarded as its
preference value.

Nishida, Satoshi, Yusuke Nakano, Antoine Blanc, Naoya Maeda, Masataka Kado, and Shinji Nishimoto. "Brain-mediated transfer learning of convolutional neural networks." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 5281-5288. 2020.
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Algonauts 2021

* fMRI from 10 human subjects that watched over 1,000 short (3 sec) video clips.

=

=

Cichy, Radoslaw Martin, Kshitij Dwivedi, Benjamin Lahner, Alex Lascelles, Polina lamshchinina, M. Graumann, A. Andonian et al. "The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion." arXiv preprint arXiv:2104.13714 (2021).

IJCAI 2023: DL for Brain Encoding and Decoding

30


https://arxiv.org/ftp/arxiv/papers/2104/2104.13714.pdf
https://arxiv.org/ftp/arxiv/papers/2104/2104.13714.pdf
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Other Multimodal Stimulus Datasets
I e i N O

Mitchell et al., 2008 fMRI English 60 different word- Viewing word-picture 60 different word- Passive viewing
picture pairs from 12 pairs picture pairs presented
categories. six times each
Sudre et al., 2012 MEG English 60 concrete nouns 9 Reading 60 stimuli x 20 Question answering
along with line questions = 1200
drawings examples
Zinszer et al., 2017 fNIRS English 8 concrete nouns 24 Viewing and listening 12 blocks with the 8 Passive viewing and
(audiovisual word and stimuli per subject. listening
picture stimuli): bunny,
bear, kitty, dog, mouth,
foot, hand, and nose
Pereira et al., 2018 fMRI English 180 Words with 16 Viewing WP, sentences 180 WP, S and WC per  Passive viewing
Picture, Sentences, or word clouds subject; 96+72
word clouds; 96 text passages shown 3
passages; 72 passages times
Cao et al., 2021 fNIRS Chinese 50 concrete nouns 7 Viewing and listening Each stimulus is Passive viewing and
from 10 semantic presented 7 times. listening
categories
Courtois Neuromod fMRI full-length 6 Viewing and ~100 hours of data per  Passive viewing
movies and Listening participant
TV show
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Concrete nouns with line drawings

* Subjects were asked to perform a QA
task, while their brain activity was
recorded using MEG.

* Subjects were first presented with a |
question (e.g., “Is it manmade?”), caro
followed by 60 concrete nouns, along
with their line drawings, in a random
order.

* Each stimulus was presented until ' i
the subject pressed a buttonto
respond “yes” or “no” to the initial

4%
g

guestion. ——— hold it?
* Once all 60 stimuli are presented, a
new question is shown for a total of 20 questions

20 questions.

Sudre, Gustavo, Dean Pomerleau, Mark Palatucci, Leila Wehbe, Alona Fyshe, Riitta Salmelin, and Tom Mitchell. "Tracking neural coding of perceptual and semantic features of concrete nouns." Neurolmage 62, no. 1 (2012): 451-463.
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Word+Picture, Sentences, Word Clouds, Passages

Experiment 1: . Experiment 2: Experiment 3:
Bird Wiash Musical instruments (clarinet) Skiing (passage 1)
1. The bird flew around the cage. . 1. To make the counter sterile, wash it. A clarinet is a woodwind musical instrument. | hesitantly skied down the steep trail
g. ]I'_rl:e nelst ga; |L's13t big enoqgt; rIor the btlrd. g Lhﬁ'ESh;NaSheL chan wallfsh ?'LI :)he dishes. It is a long black tube with a flare at the bottom. that my buddies convinced me to try.

- AW ORIy DI 808 CARSHE 1610 PArTCL - 116, TGS 10 Wasi HHISal Wi DAl Soap, The player chooses notes by pressing keys and holes. | made a bad turn, and | found myself
4. The bird poked its head out of the hatch. 4. She felt clean after she could wash herself. The clarinet is used both in jazz and classical music. tumbling down. | finally came to a stop
5. The bird holds the worm in its beak. 5. You have to wash your laundry beforehand. apiHet artof the slons. Mivskiswans
6. The bird preened itself for mating. 6. The maid was asked to wash the floor. Musical instruments (accordion) nowherepto be found zn'd r'r¥y ol

X An accordion is a portable musical instrument were lodged in a snow drift up the hill.
with two keyboards. One keyboard is used for Skiing (passage 2)
e "t |nd|(\j/|dual notzs, trtf stﬂer f(t)r: cthglrds. ACt(;]OI'dIOES A major strength of professional skiers
produci soun ‘g'.' . f ?W s thcl)<w a;r ;oug is how they use ski poles. Proper use of
) reﬁl Moo zjonlls paﬁ g I SYPOHEeS ski poles improves their balance and
h WHSSHAROUING SRS D A DEIONE. adds flair to their skiing. It minimizes
Nest Clean Musical instruments (piano) the need for upper body movements
Flock Sh The piano is a popular musical instrument to regain lost balance while skiiing.
Bird Wash e played by means of a keyboard. Pressing a Skiing (passage 3)
u Sink p.iano'key causes a felt-tipp.ed hammer to hit a New ski designs and stiffer boots let
Bk Mating V|btrat|ng steel (sjtnng. IThte p|ra]1no hat?]an enocr‘mous skiers turn more quickly. But faster and
Winaed Soap Laundry holerange, and'padalsio changeM1e soun tighter turns increase the twisting force
hee quality. The piano repertoire is large, and on the legs. This has led to more injuries
) L famous pianists can give solo concerts. y

particularly to ligaments in the skier's knee

* Experiment 1: 180 wordsé_128 nouns, 22 verbs, 29 adjectives and adverbs, and
1 function word). 3 paradigms.

* Experiment 2; 96 text ﬂassages, each with 4 sentences from 24 broad topics
(e.q., pro{esismns, clothing, birds, musical instruments, natural disasters,
crimes, etc.

» Experiment 3. .72 passages..each with 3-4 sentences. from.another. 24 topics.
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https://www.nature.com/articles/s41467-018-03068-4

fNIRS with audio-visual stimuli .

 Stimuli are pictures and audios of 50 \(
objects from 10 categories. '

A
* Visual presentation lasts for 3s, with Tlxﬂls
audio presented immediately at the 3‘ '
onset, followed by a 10s rest period. =

Category Exemplar
e Duri ng rest period’ pa rtici pa Nnts are tool pliers, saw, screwdriver, scissor, hammer

. . . vegetable celery, corn, carrot, tomato, lettuce
instructed to flxate onanXd Isplayed building bird’s nest, tiananmen, oriental pearl TV
in the center of the screen. | fower, pyramid, water cube

insect bee, butterfly, dragonfly, ant, fly

transportation | car, train, truck, airplane, bicycle

furniture sofa, chair, desk, bed, bookshelf

cloth sweater, jeans, shirt, skirt, dress

animal panda, cat, dog, horse, cow

body-part arm, eye, foot, palm, leg

kitchen knife, pan, spoon, glass, chopsticks

Cao, Lu, Dandan Huang, Yue Zhang, Xiaowei Jiang, and Yanan Chen. "Brain decoding using fnirs." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 14, pp. 12602-12611. 2021.
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Agenda

* Introduction to Brain encoding and decoding [30 min]
e Stimulus Representations [1 hour]

e Coffee break [30 min]

* Deep Learning for Brain Decoding [1 hour 30 min]

* Lunch break [1 hour 30 min]

* Deep Learning for Brain Encoding [1 hour 30 min]

* Coffee break [30 min]

* Advanced Methods [1 hour 15 min]

 Summary and Future Trends [15 min]
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Agenda

 Stimulus Representations [1 hour]
* Text Stimulus Representations
e Visual Stimulus Representations
e Audio Stimulus Representations
* Multimodal Stimulus Representations
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Stimulus Representations

e Text Stimuli

* Basic NLP Representations: Corpus co-occurrence counts, topic models, Linguistic (POS,
dependencies, roles)

» Discourse features.

* Semantic: word embedding methods, sentence representation models, recurrent neural
networks and Transformer methods.

* Experiential attributes: Rated on 0-6 scale or binary.

e Visual Stimuli
* Visual field filter banks
e Gabor wavelet pyramid
e HMAX model
e Convolutional neural networks

e Audio Stimuli
* Phoneme rate and presence of phonemes.

e Multimodal Stimuli
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Agenda

 Stimulus Representations [1 hour]
* Text Stimulus Representations
e Visual Stimulus Representations
e Audio Stimulus Representations
* Multimodal Stimulus Representations
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Text Stimulus Representations

* Basic NLP Representations
e Corpus co-occurrence counts
* Topic models
* Linguistic: POS, dependencies, roles.

* Discourse
e Characters, motion, speech, emotions, non-motion verbs

* Deep Learning based Representations
* Embeddings
* Longer context using LSTMs
* Transformers

* Experiential attributes
* Rated on 0-6 scale
* Binary
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Basic NLP Representations for Word Stimuli

« Corpus co-occurrence counts * Topic models (Pereira et al., 2013)
» 25 verbs (Mitchell et al., 2008; Pereira et * Get relevant Wiki pages (e.g.,
al., 2013) “airplane” is “Fixed-Wing Aircraft”) and
* Verbs: see, hear, listen, taste, smell, eat, Oth,er”“nked pages (e.g. “Aircraft
touch, nib, lift, manipulate, run, push, fill, cabin”)
move, ride, say, fear, open, approach, near, * LDA topic modelling on 3500 pages
enter, drive, wear, break, and clean. with #tOpiCS from 10 to 100, in
* These verbs generally correspond to basic increments of 5, setting the a
sensory and motor activities, actions per parameter to 25/#t0piCS.
formed on objects, and actions involving . .
changes to spatial relationships. * LSA topic modelling (Wang et al., 2017)

"house" LT TT-T1 LT " [ 11
"liver" HEEEEE L1 [ 11
"train" [TTT-T] [T] [ 1]
"asparagus" |_|—|—|—|—] (.-)

= [T1 1]

* For each (verb, stimulus word w), feature
value = normalized co-occurrence count of w
with any of three forms of the verb (e.g.,

taste, tastes, or tasted) over the text corpus. - shammerr [ T [ 1] topic word probability vector
* 985 common English words (such as above,
Worry, and mOther) in (Huth Et al., 2016) 3500 Wikipedia articles article/concept topic probability
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Basic NLP Representations for Word Stimuli

* Word length

* Is the word related to one of the 28 unique parts of speech and 17 unique
dependency relationships?

e Position of word in the sentence

* Roles
* Main verb
e Agent or experiencer
Patient or recipient
Predicate of a sentence (The window was dusty)
Modifier (The angry activist broke the chair)

 Complement in adjunct and propositional phrase, including direction, location, and time
(The restaurant was loud at night).

Wehbe, Leila, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas, and Tom Mitchell. "Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses." PloS one 9, no. 11 (2014): e112575.

Wang, Jing, Vladimir L. Cherkassky, and Marcel Adam Just. "Predicting the brain activation pattern associated with the propositional content of a sentence: modeling neural representations of events and states.” Human brain mapping 38, no. 10 (2017): 4865-4881.
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https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112575
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http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf
http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf

Discourse features (for Harry Potter dataset)

* Characters: Resolve all pronouns to the character to whom they refer, and
make binary features to signal which of the 10 characters are mentioned.

* Motions: Identify a set of motions that occurred frequently in the chapter (e.g.
fly, manipulate, collide physically, etc.).

e Speech: Indicate the parts of the story that correspond to direct speech
between the characters. Used the presence of dialog as a feature.

* Emotions: Identified a set of emotions that were felt by the characters in the
chapter (e.g. annoyance, nervousness, pride, etc.).

* Verbs: Identified a set of actions that occurred frequently in the chapter that
were distinct from motion (e.g. hear, know, see, etc.).

Wehbe, Leila, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas, and Tom Mitchell. "Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses." PloS one 9, no. 11 (2014): e112575.

Wang, Jing, Vladimir L. Cherkassky, and Marcel Adam Just. "Predicting the brain activation pattern associated with the propositional content of a sentence: modeling neural representations of events and states.” Human brain mapping 38, no. 10 (2017): 4865-4881.
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http://www.ccbi.cmu.edu/reprints/Wang_Just_HBM-2017+%20supp-info_sentence%20decoding_reprint.pdf

DL Representations: Using embeddings for word stimuli

stimuli

table

chair

hammer

forward model

a8
4 . . .
A representation of B mapping of semantic
words/sentences as dimensions to patterns
semantic vectors of brain activation
table ([ N O O O O Od
chair | H B
| hammer | WIS ‘ ’ :
\_ ] J ‘

\_ Vsubject-independent subject-dependent

N

T
—1C%

imaging data

Noun Verb Adjective
GloVe 0.8768(0.0792)  0.8544(0.0713)  0.8337(0.1081)
Word2Vec 0.8386(0.0942)  0.8309(0.0636)  0.8210(0.1028)
Fasttext 0.8407(0.0676)  0.8235(0.0766)  0.8077(0.0996)
RWSGwn 0.8123(0.0886)  0.7453(0.0771)  0.7425(0.1032)
ELMo 0.9088(0.0632)  0.8520(0.0797)  0.7993(0.1244)
ConceptNet 0.8646(0.0875)  0.8702(0.0695)  0.8249(0.0925)
Dependency  0.8554(0.0731) 0.8137(0.0755)  0.7891(0.0808)

. (256()1\6? 300D vectors (Pereira et al., 2016; Wang et al., 2017; Pereira et al., 2018; Anderson et al.,

e 1000D Non-negative sparse embeddings (Wehbe et al., 2014).

* 300D embeddings by training a skip-gram model using negative sampling (SGNS) on Italian and
English Wikipedia dumps using Gensim. (Anderson et al., 2017a)

* FastText (Berezutskaya et al., 2020)

 Comparison across multiple embedding methods
* GloVe, word2vec, WordNet2Vec, FastText, ELMo (Hollenstein et al., 2019)
* word2Vec, fastText, GloVe, Dependenc

concatenated combinations (Wang et a

I,

based word2vec, RWSGwn ConceptNet, ELMo, averaged and

2020)
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DL Representations: Using longer context for word stimuli

e Multi-task LSTMs

* Predict next word and POS of next

word.

Ypos
Tsohmax

Linear

X

Yim

Tschmax

‘ Linear ‘

X

Linear
Layers
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* ELMo embeddings: LSTM based
pretrained language model

“.in all honesty

[ ]:LSTM Cell

: ; 1 2 985
i'm gonna start - 5 i
out by admitting i : layer, l1 w,
sometimes lie..” | |-|fii : I .
Iayer1 ...... :__> I WT
Stimulus LT word, word, word, . AWord
Embedding .
: LSTM Network Representations
(pre-trained)
Traditional Approaches
Y 0.615
T © —}— layer 1 layer 2
X c 0610
52 . —
T 5
Y9
€ 5 0.600
0 5 10 15 20 25

context length

(a) ELMo

Toneva, Mariya, and Leila Wehbe. "Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain)." Advances in Neural Information Processing Systems 32 (2019).

Jain, Shailee, and Alexander Huth. "Incorporating context into language encoding models for fMRI." Advances in neural information processing systems 31 (2018).

Jat, Sharmistha, Hao Tang, Partha Talukdar, and Tom Mitchell. "Relating simple sentence representations in deep neural networks and the brain." arXiv preprint arXiv:1906.11861 (2019).
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https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://arxiv.org/pdf/1906.11861.pdf
https://arxiv.org/pdf/1906.11861.pdf
https://arxiv.org/pdf/1906.11861.pdf

DL Representations: Using sentence embeddings

e Unstructured Models: Ignore sentence Topic = Passage Sentence [b]
structure 1. The piano is a popular musical instrument. ..
. . . 2. Pressing a piano key causes a felt-tipped
¢ Slmp|e POO||ng MethOdS Piano hammer...
* Average/max/concat(max, avg) pooling over word 3. The piano has an enormous note range.
embe dings_ Musical 1. A clarinet is a woodwind musical instrument...
: usica . 2. Itis along black tube with a flare at the bottom
* Adva nced P00||ng M ethOdS Instruments | Accordion 3. The player chooses notes by pressing keys and
* FastSent (Hill, Cho, and Korhonen 2016) sums holes.
word embE(_jdlngS Ina $entence as Its ) 1. An accordion is a portable musical instrument.
representation to predict the surrounding Clarinet | 2 One keyboard is used for individual notes
sentences. 3. Accordions produce sound with bellow that blow
* SIF (Arora, Liang, and Ma 2016) adapts the naive o
averaging of word embeddings to weighted
averaging. .
[a] Ridge Lasso MLP
L Stru Ctu red MOdeIS topic | passa. | sente. | topic | passa. | sente. | topic | passa. | sente.
. . Max | 0.88 | 0.76 | 0.65 | 0.88 | 0.75 | 0.70 | 0.83 | 0.70 | 0.63
¢ Un_SU pervised Methods: Skip-thought, Avg | 090 | 083 | 073 | 092 | 081 | 078 | 0.89 | 0.78 | 0.67
QuickThought. Cat | 092 | 0.83 | 0.74 | 0.90 | 0.81 | 0.80 | 0.86 | 0.74 | 0.66
. Sif | 089 | 084 | 0.69 | 091 | 0.77 | 072 | 0.84 | 0.73 | 0.65
* Supervised Methods: InferSent, GenSen Fast | 092 | 081 | 074 | 090 | 079 | 077 | 088 | 076 | 0.67
(Subramanian et al. 2018), Universal Sentence Skip | 0.90 | 0.82 | 0.75 | 0.91 | 080 | 0.79 | 0.86 | 0.81 | 0.73
EnCOder Quik | 091 | 0.84 | 0.75 | 091 | 0.81 | 0.79 | 0.90 | 0.82 | 0.77
Gen | 091 | 0.84 | 0.78 | 092 | 0.84 | 0.84 | 091 | 0.84 | 0.80
Inf | 094 | 090 | 0.83 | 093 | 0.86 | 0.84 | 092 | 0.84 | 0.79

Toneva, Mariya, and Leila Wehbe. "Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain)." Advances in Neural Information Processing Systems 32 (2019).

Sun, Jingyuan, Shaonan Wang, Jiajun Zhang, and Chengqging Zong. "Towards sentence-level brain decoding with distributed representations." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 7047-7054. 2019.
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https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2019/2019-SunJingyuan-AAAI.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2019/2019-SunJingyuan-AAAI.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2019/2019-SunJingyuan-AAAI.pdf

DL Representations: Transformer-based methods tor text
stimuli (Layer #, context length, architecture)

v 0.615
§5 st = T -- Structure and Training Task
25 0.64 1 L —
§§ 0:605+ / /./"/—/_:/t:,:"“—":ﬁ AVG Average Pooling
€ 5 0.600 ; : - T
. : 5 % p. R 5063 >< ZP\//Z MAX Max Pooling
context length - 74
3 SR Unstructured AVMA Concatenation of AVG and Max
(a) ELMo 8 Sl
8 SIF Weighted Average Pooling
065 E_ 0:614 [ FairSeq CNN (language model)
€ 064 g Skip LSTM (language model )
3 = _
g 2 § 0:60 GenSen BiLSTM (multi-task learning)
5 062 1S
g - o5l InferSent CNN-BiLSTM (natural language inference)
s N Structured
2 0.60 - =¥ — ELMo CNN-BiLSTM (language model)
o
>
% 0.59 0.58 4 I ; I ' - I ' - ' BERT
£ 058 0 5 10 15 20 25 30 35 40
057 context length RoBerTa Transformer (language model)
o 5 10 15 20 25 30 35 40 —— layer1 —}— layer6 —— layer 11 layer 16 GPT2
context length —— layer2 —}— layer7 —}— layer12 layer 17 -
—— layer 1 —l— layer 4 —4— layer 7 layer 10 + layer 3 + layer 8 - ; layer 13 layer 18 1 ) . - -
== layer2 =f= layer5 == layer8 layer 11 —— layer4a  —f— layer 9 layer 14 layer 19 L i Z H . I B
—f=— layer3  =—f=— layer 6 layer 9 layer 12 —— layer5 == layer 10 layer 15 0.9 : I I I ) | ’ n I ] i B i
L i -
(b) BERT (c) T-XL 08 l : I | \ ] l 7 |
L
1
Transformer-XL is the only model that continues to increase performance as the o [ [ J
context length is increased. In all networks, the middle layers perform the best 06 ‘
for contexts longer than 15 words. The deepest layers across all networks show a
. . 05
sharp increase in performance at short-range context (fewer than 10 words), AVG MAX AVMA SIF Skip  FarSeq  ELMo  GenSen InferSent RoBerTa  GPT2 BERT

followed by a decrease in performance. [Toneva and Wehbe, 2019]

different topics same topic,different passages same passage, different sentences

Toneva, Mariya, and Leila Wehbe. "Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain)." Advances in Neural Information Processing Systems 32 (2019).

Sun, Jingyuan, Shaonan Wang, Jiajun Zhang, and Chengging Zong. "Neural encoding and decoding with distributed sentence representations.” IEEE Transactions on Neural Networks and Learning Systems 32, no. 2 (2020): 589-603.
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DL Representations: Transformer-based methods tor text
stimuli (NLP task finetuning and scrambled LM)

fMRI Neural network models
Sentence @  Sentence
the bird the bird
flew flew
F
F °
eeeeeeeeeeeeee ¢

Task-specific output
1’oiseau a
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Figure 1: Brain decoding methodology. We use human
brain activations in response to sentences to predict
how neural networks represent those same sentences.
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Model

(a) Mean squared error metric

Task Dataset Domain | #train Avg sent len. # types
Paraphrase Quora Ques- social 364k 22.1 103k
classifica- tion Pairs QA
tion
Question SQuAD 2.0 wiki 130k 11.2 43.9k
answer- (Rajpurkar
ing et al., 2018)
Natural MNLI mixed 393k 16.8 83.3k
language (Williams
inference et al., 2017)
Sentiment SST-2 movie 67.3k 9.41 14.8k
analysis  (Socher reviews

et al., 2013)

Table 2: Details of the tasks used for fine-tuning.

Mean average rank
(2}
o

(b) Average rank metric

Model

e Scrambled LM

* Randomly shuffle words from the
corpus samples, to remove all
first order cues to syntactic
structure.

e LM-scrambled: words are
shuffled within sentences

* LM-scrambled-para: words are
shuffled within their containing
paragraphs in the corpus.

* LM _pos: predict only the part
of speech of a masked word,
rather than the word itself.

e Scrambled LMs work best!

Gauthier, Jon, and Roger Levy. "Linking artificial and human neural representations of language." arXiv preprint arXiv:1910.01244 (2019).
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DL Representations: Transformer-based methods tor text
stimuli (NLP task finetuning)

| Task | HuggmgFace Model Name | Dataset | W Paraphrase B Summarisation M Question Answering B Sentiment Analysis
NLI bert-base-nli-mean-tokens Stanford Natural Language Inference (SNLI), MultiNLI NER Word Sense Disambiguation M Natural Language Inference Semantic Role Labeling
Coreference Resolution Shallow Synatx Pretrained BERT

Average of Subjects

PD bert-base-cased-finetuned-mrpc Microsoft Research Paraphrase Corpus (MRPC) I
SS bert-base-chunl CoNLL-2003 > 07 I I I
Sum bart-base-samsum SAMSum g I I | I I I I I I
¢l ] R | [
WSD | bert-base-baseline English all-words Q08 I \ I H I H H I H II
CR bert_coreference_base OntoNotes and GAP N \I H.[ I :[ II I II I I II
NER bert-base-NER CoNLL-2003 I I I
0 Language_LH Language_RH Vision_Body Vision_Face Vision_Object Vision_Scene Vision DMN TP
QA bert-base-qa SQUAD
Pereira dataset: CR, NER, and SS perform the best.
SA bert-base-sst Stanford Sentiment Treebank (SST)
SRL bert-base-srl English PropBank SRL | I
I p— R
Tasks
Paraphrase, Summarization, Question Answering, Sentiment [ ]
. . . . (@) £ < T - S B & x < u
Analysis, NER, Word Sense Disambiguation, Natural T 530z 4 F g o w0

Language Inference, Semantic Role Labellng, Coreference Dendrogram constructed using similarity on representations from task-

Resolution, Shallow Syntax Parsing specific Transformer encoder models with stimuli from the dataset
passed as input.

Oota, Subba Reddy, Jashn Arora, Veeral Agarwal, Mounika Marreddy, Manish Gupta, and Bapi Raju Surampudi. "Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI Brain Activity?." arXiv preprint arXiv:2205.01404 (2022).
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DL Representations: Transformer-based methods tor text
stimuli (Multi-task setup)
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* Settings

* Finetune BERT vs not

* Finetune BERT using one representative subject
and train dense layer for each subject, vs
finetune BERT for each subject.

* Finetune BERT on MEG for all subjects, then
finetune BERT on fMRI.

* Multi-task finetune BERT for fMRI+MEG
prediction task

e Results

* Fine-tuned models predict fMRI data better
than vanilla BERT

* Relationships between text and brain activity
generalize across experiment participants.

e Using MEG data can improve fMRI predictions.

* Asingle model can be used to predict fMRI
activity across multiple experiment
participants.

Schwartz, Dan, Mariya Toneva, and Leila Wehbe. "Inducing brain-relevant bias in natural language processing models." Advances in neural information processing systems 32 (2019).
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DL Representations: Comparing Transtormers and
extracting syntax vs semantics

* Representations: s If X is activation of It" layer, XD is average
* Lexical: representation that is context- activation across similar syntax inputs
invariant. E.g., word embeddings. e Lexical: X(©
* Compositional: “contextualized” . CompositionaI:X(D;l >0
representation generated by a system . Syntax: XD, [ > 0

combining multiples words. E.g., parse trees

* Syntax: representation associated with the
structure of sentences independently of their
meaning

* Semantics: representation of a language
system that are not syntactic.

Semantic (X — X)

XLnet

Roberta
AlBert
Bert

Syntactic (X)

e Semantic: X®-xO®

Distilgpt2

Other
architectures

Layer 12

A. B.

wn
Lexical Compositional 9
Compositional P13 P k)
Meaning _g N
s AD B
Syntactic tree S J )
=
[77)
Part of Speech  ADV ADV ADJ
. . o Layer 1
Lexical Meaning ® @ nm S am N Embedding
Word t h £ —_ : ' ' ) )
ords NOot very happy s 0 Brain score (R) .08
n

Caucheteux, Charlotte, Alexandre Gramfort, and Jean-Remi King. "Disentangling syntax and semantics in the brain with deep networks." In International Conference on Machine Learning, pp. 1336-1348. PMLR, 2021.
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Experiential attributes model for text stimuli

° Represe nts WO rds |n terms Of human (Amazon Table 1 List of attributes first arranged by modality, and then subdi-
I i : ided into individual attrib
Mechanical Turk) ratings of their degree of T o ndE A
association with different attributes of experience Dominant ~ Attribute
« . dali

* “On ascale of 0 to 6, to what degree do you think of a motey
banana as having a characteristic or defining color?” Vision vision, bright, dark, color, pattern, large, small,

* Anderson et al., 2019: 65 attributes spanning sensory, ?Oﬁ%“' dbi°m°ti°n’ fast, slow, shape, complexity,
motor, affective, spatial, temporal, causal, social, and i ;‘.c?' °1 y'd low. hish sound. mus .

bStraCt Cognitive experiences. uditory audition, loud, low, high, soun tmu51c,‘speec .
d Somatosensory touch, temperature, texture, weight, pain.
* Value-add on top of text models: a lot of Guetatoy  taste smell
experiential information goes unstated in natural Motor head, upper limb, lower limb, practice.
Verbal Commun|cat|0n. Attention atten1_:ion, arousal. _

* E.g., itis rarely useful to communicate the color of Event duraton, ong, short, caused, consequential
bananas because it is obvious to all those with Evaluation  benefit, harm. pleasant, unpleasant.
eXperlence Of ba nNanas. Cognition human, communication, self, cognition, number.

 E.g., it would be unusual to specify that dropping things Emotion happy, sad, angry, disgusted, fearful, surprised.
involves movement. Drive drive, needs.

Spatial landmark, path, scene, near, toward, away.

* Nishida et al., 2020 use a subset of 20 attributes.

Anderson, Andrew James, Jeffrey R. Binder, Leonardo Fernandino, Colin J. Humphries, Lisa L. Conant, Rajeev DS Raizada, Feng Lin, and Edmund C. Lalor. "An integrated neural decoder of linguistic and experiential meaning." Journal of Neuroscience 39, no. 45 (2019): 8969-8987.

Anderson, Andrew James, Jeffrey R. Binder, Leonardo Fernandino, Colin J. Humphries, Lisa L. Conant, Mario Aguilar, Xixi Wang, Donias Doko, and Rajeev DS Raizada. "Predicting neural activity patterns associated with sentences using a neurobiologically motivated model of semantic
representation.” Cerebral Cortex 27, no. 9 (2017): 4379-4395.

Anderson, Andrew James, Kelsey McDermott, Brian Rooks, Kathi L. Heffner, David Dodell-Feder, and Feng V. Lin. "Decoding individual identity from brain activity elicited in imagining common experiences.” Nature communications 11, no. 1 (2020): 1-14.
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Binary attribute representations

« Each stimulus is represented using * 42 neurally plausible sgmantic fea_tu.res (NPSFs)
* Perceptual and affective characteristics of an

a binary vector Capturing entity (10 NPSFs coded such features, such as

man-made, size, color, temperature, positive

memberShip to one of the eight affective valence, high affective arousal), animate
semantic Categories_ beings (person, human-group, animaclj, and time

and space properties (e.g. unenclosed setting,

change of location)
% Behavioral Data

4
o Word NPSF features

Interview Social, Mental action, Knowledge, Communication,

@ Abstraction

Walk Physical action, Change of location
Mammals

Hurricane  Event, Change of physical state, Health, Natural,

Negative affective valence, High affective arousal

Vegetables Cellphone  Social action, Communication, Man-made, Inanimate
Vehicles Judge Social norms, Knowledge, Communication, Person
Artificial Places . : .
Nistursl Placss Clever Attribute, Mental action, Knowledge, Positive

affective valence, Abstraction

Hand'a_\ras Giacomo, Emiliano Ricciardi, Andrea Leo, Alessandro Lenci, Luca Cecchetti, Mirco Cosottini, Giovanna Marotta, and Pietro Pietrini. "How concepts are encoded in the human brain: a modality independent, category-based cortical organization of semantic knowledge." Neuroimage 135

Wang, Jing, Vladimir L. Cherkassky, and Marcel Adam Just. "Predicting the brain activation pattern associated with the propositional content of a sentence: modeling neural representations of events and states.” Human brain mapping 38, no. 10 (2017): 4865-4881.
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Agenda

 Stimulus Representations [1 hour]
* Text Stimulus Representations
* Visual Stimulus Representations
e Audio Stimulus Representations
* Multimodal Stimulus Representations
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Visual Stimuli

* VVisual field filter banks (Thirion et al., 2006; Nishimoto et al., 2011).
e Gabor wavelet pyramid (Kay et al., 2008).
* HMAX model (Horikawa et al., 2017).

* Convolutional neural networks (Yamins et al., 2014; Anderson et al., 2017a;
Beliy et al., 2019; Du et al., 2020; Nishida et al., 2020).
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Visual Stimuli: Gabor wavelet pyramid

a Spatial frequency
1 cycle/FOV 2 cycles/FOV 4 cycles/FOV

8 cycles/FOV

EEEEEEEN C
||

b Orientation

0° 22.5° 45° 67.5° 90° 112.5° 135° 157.5°

00

Phase

90°

a, Spatial frequency and position. Wavelets occur at five spatial frequencies.

This panel depicts one wavelet at each of the first five spatial frequencies.
At each spatial frequency f cycles/field-of-view (FOV), wavelets are
positioned on an f x f grid, as indicated by the translucent lines.

b, Orientation and phase. At each grid position, wavelets occur at eight
orientations and two phases. This panel depicts a complete set of wavelets
for a single grid position. Dashed lines indicate the bounds of the mask
associated with each wavelet.

16 cycles/FOV

/ ‘ > \
Add Response
Image / DC offset
:| Sum
. .

z —>» 01 —>» 025

Weight
Project Combine
onto quadrature
wavelets pairs

Gabor wavelet pyramid model. Each image is projected onto the individual
Gabor wavelets comprising the Gabor wavelet pyramid. Gabor wavelets
differ in size, position, orientation, spatial frequency, and phase. The
projections for each quadrature pair of wavelets are squared, summed,
and square-rooted, yielding a measure of contrast energy. The contrast
energies for different quadrature wavelet pairs are weighted and then
summed. Finally, a DC offset is added. The weights are determined by
gradient descent with early stopping.

Kay, Kendrick N., Thomas Naselaris, Ryan J. Prenger, and Jack L. Gallant. "ldentifying natural images from human brain activity." Nature 452, no. 7185 (2008): 352-355.
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Visual Stimuli: HMAX model

. Classification layer
* Simple Cells S1 S ‘
* Input images are densely sampled by i
arrays of two-dimensional filters. C2 layer

° . _ Max activation over each
ouput Lt 1 == OO0000

Complex Cells C1: max pooling

Simple Cells 52 oowes [T [0 [ (5] [ 1T

(small image patches)
* Gaussian with mean 1 and standard

deviation 1. C1 layer
. x over local S1 uni
 Complex Cells C2: max pooling e
* View Tuned Units (VTUs) S1 layer

* C2 units provide input to VTUs Edge detectors

 C2 - VTU connections are the only stage

of the HMAX model where learning occurs. ihioge [oray-6ce)

Riesenhuber, Maximilian, and Tomaso Poggio. "Hierarchical models of object recognition in cortex.” Nature neuroscience 2, no. 11 (1999): 1019-1025.

Horikawa, Tomoyasu, and Yukiyasu Kamitani. "Generic decoding of seen and imagined objects using hierarchical visual features." Nature communications 8, no. 1 (2017): 1-15.
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Visual Stimuli: Convolutional Neural Networks
(CNNs)

* For word stimuli, gather 20 most relevant images using Google search, then get CNN representation
(Anderson et al., 2017).

* AlexNet, VGG-16 (Nishida et al., 2020; Berezutskaya et al., 2020), Inception, ResNet, DenseNet.
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Figure source: A. Karpathy
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Visual Stimuli: Object Recognition with Word embeddings

 Step 1: Pass film frames through
concept recognition module to get
up to 20 concept labels per frame.
e Used Clarifai.

» Step 2: Get fastText embeddings for
each concept label. Frame
embedding is average of word
embeddings.

* Step 3: PCA for dimensionality
reduction.

Berezutskaya, Julia, Zachary V. Freudenburg, Luca Ambrogioni, Umut Gugla, Marcel AJ van Ger

and Nick F. Ramsey. "Cortical network responses map onto data-driven features that capture

Extracting semantic components of visual semantics in film frames

Visual concept Language
recognition model
i people -
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house
child
girl
building
outdoors ——Hr—>» — >
horse
wood
cavalry
window
acrobatics

Manual
correction

Semantic
vectors (300) components (50)

Concept Semantic
Frame #1 labels (129)

Placing individual frame in the multidimensional semantic space
horse o oman

lawn ;
& roof .walklng

k=1 g WSk \\ / o Prick
animal
Ame& o barn

carriage

visual semantics of movie fragments." Scientific reports 10, no. 1 (2020): 1-21.
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Visual Stimuli: Semi-supervised CNNs

* Problem: Scarce labeled data. T hasel (®)  Decodertraining

LD

(Supervised)

Adding Adding
Supervised self-supervision Supervised self-supervision
Ground truth only (Fig. 1b) (Fig. 1d,e) Ground truth only (Fig. 1b) (Fig. 1d,e)

(c) Encoder Architecture

convi |I RelU
stride 2
|

Decoder

nv 3x3 3x3 ||conv 3x3 ¥
» RelU ReLlU RelU |lconv 3x3 = I ':‘_\’
2xus || 2xus || 2xus || sigmoid me '
BN BN BN

Training phases & Architecture. (a) The first training phase: Supervised
training of the Encoder with {Image, fMRI} pairs. (b) Second phase: Training
the Decoder simultaneously with 3 types of data: {Image, fMRI} pairs
(supervised examples), unlabeled natural images (self-supervision), and
unlabeled test-fMRI (self-supervision). Note that the test-images are never
used for training. The pretrained Encoder from the first training phase is
kept fixed in the second phase. (c) Encoder and Decoder architectures. BN,
US, and ReLU stand for batch normalization, up-sampling, and rectified
linear unit, respectively.

(Unsupervised)

&+

‘fMRIBn ImageNet’

Beliy, Roman, Guy Gaziv, Assaf Hoogi, Francesca Strappini, Tal Golan, and Michal Irani. "From voxels to pixels and back: Self-supervision in natural-image reconstruction from fMRI." Advances in Neural Information Processing Systems 32 (2019).
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Visual Stimuli; Convolutional LSTM Autoencoder

StepEncog, a convolutional LSTM autoencoder model trained on fMRI voxels.

Slice-s0 Slice-s10 Slice-s30 Slice-s50 Slice-s60
Input

Apartment

L =
Xception Model t 0 1
L
Apartment »S L. ? ? ? Decoder
Glove Vector T :
M |
Subject # > ; v 5 ,L\ Y ,7‘1'
| : = R W S 874
: - f ' i
Start Slice i : i E i i t!ncoder
White Image ; : |
; N 7 z

Fig. 2. Architecture of the StepEncog: the Convolutional LSTM autoencoder model used for our experiments. We used multi-modal embedding along with
fMRI slices as input, and “step-ahead” fMRI slices as output.

Oota, Subba Reddy, Vijay Rowtula, Manish Gupta, and Raju S. Bapi. "StepEncog: A convolutional LSTM autoencoder for near-perfect fMRI encoding."” In 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE, 2019.
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Latent Diffusion Model
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Figure 1. Presented images (red box, top row) and images reconstructed from fMRI signals (gray box, bottom row) for one subject (subjO1).

Takagi, Yu, and Shinji Nishimoto. "High-resolution image reconstruction with latent diffusion models from human brain activity." In CVPR, pp. 14453-14463. 2023.
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Agenda

 Stimulus Representations [1 hour]
* Text Stimulus Representations
e Visual Stimulus Representations
* Audio Stimulus Representations
* Multimodal Stimulus Representations
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Audio Stimuli

* Word rate, Phoneme rate, Presence of phonemes (Huth et al., 2016).
e SoundNet (Aytar, Vondrick, and Torralba 2016) features (Nishida et al., 2020)

Visual Recognition Networks
Unlabeled &

Video @@ n Object Distribution . KL

RGB Frames r ImageNet CNN 1
Scene Distribution
L B s > KL
F 3
— Places CNN
ey
Raw S
WaVEform . conv7
convs p00|5 o convg
convé4
ool2 conv3 .
N1 SoundNet Architecture
Input°°""1°°°'1 Deep 1D Convolutional Network

Huth, Alexander G., Wendy A. De Heer, Thomas L. Griffiths, Frédéric E. Theunissen, and Jack L. Gallant. "Natural speech reveals the semantic maps that tile human cerebral cortex." Nature 532, no. 7600 (2016): 453-458.

Nishida, Satoshi, Yusuke Nakano, Antoine Blanc, Naoya Maeda, Masataka Kado, and Shinji Nishimoto. "Brain-mediated transfer learning of convolutional neural networks." In Proceedings of the AAAI Conference on Attificial Intelligence, vol. 34, no. 04, pp. 5281-5288. 2020.
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Agenda

e Stimulus Representations [1 hour]
e Text Stimulus Representations
e Visual Stimulus Representations
* Audio Stimulus Representations
* Multimodal Stimulus Representations
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Multimodal Stimulus Representations

* Processing videos required audio+image representations
* E.g., VGG+SoundNet (Nishida et al., 2020)

* Image+text combination models (Wang et al., 2020)
* GloVe+VGG, and ELMo+VGG
* Averaging or concatenation

Wang, Shaonan, Jiajun Zhang, Haiyan Wang, Nan Lin, and Chengging Zong. "Fine-grained neural decoding with distributed word representations." Information Sciences 507 (2020): 256-272.
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Multimodal Stimuli: Visio-linguistic representations
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* Pretrained CNNs: VGGNet19, ResNet50, InceptionV2ResNet and EfficientNetB5

* Pretrained text Transformers: ROBERTa

e Image Transformers: Vision Transformer (ViT), Data Efficient Image Transformer (DEiT), and Bidirectional
Encoder representation from Image Transformer (BEiT).

* Late-fusion models: VGGNet19+RoBERTa, ResNet50+RoBERTa, InceptionV2ResNet+RoBERTa and
EfficientNetB5+RoBERTa.

e Multi-modal Transformers: Contrastive Language-Image Pre-training (CLIP), Learning Cross-Modality Encoder
Representations from Transformers (LXMERT), and VisualBERT.

* VisualBERT performs the best for brain encoding!
Oota, Subba Reddy, Jashn Arora, Vijay Rowtula, Manish Gupta, and Raju S. Bapi. "Visio-Linquistic Brain Encoding." arXiv preprint arXiv:2204.08261 (2022).
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Agenda

* Introduction to Brain encoding and decoding [30 min]
* Stimulus Representations [1 hour]

* Coffee break [30 min]

* Deep Learning for Brain Decoding [1 hour 30 min]

* Lunch break [1 hour 30 min]

* Deep Learning for Brain Encoding [1 hour 30 min]

* Coffee break [30 min]

* Advanced Methods [1 hour 15 min]

 Summary and Future Trends [15 min]
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Agenda

* Introduction to Brain encoding and decoding [30 min]
* Stimulus Representations [1 hour]

e Coffee break [30 min]

* Deep Learning for Brain Decoding [1 hour 30 min]

* Lunch break [1 hour 30 min]

* Deep Learning for Brain Encoding [1 hour 30 min]

* Coffee break [30 min]

* Advanced Methods [1 hour 15 min]

 Summary and Future Trends [15 min]
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" Outline

* Introduction to Brain Decoding

* Decoding models
* Linear Models
* Non-Linear Models (including DNNs)
* Language
* Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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*Encoding vs. Decoding

Stlmulus. coding FMRI
Representation

At three o’clock precisely I was at Baker Street, but Holmes had
not yet returned. The landlady informed me that he had left the
house shortly after eight o’clock ...

It was close upon four before the door opened, and a drunken-
looking groom, ill-kempt and side-whiskered, with an inflamed
face and disreputable clothes, walked into the room. Accustomed
as | was to my friend’s amazing powers in the use of disguises, |
had to look three times before I was certain that it was indeed he.

“Well, really!™ he cried, and then he choked; and laughed again
until he was obliged to lie back, limp and helpless, in the chair.

“What is it?”

“It’s quite too funny. I am sure you could never guess how |
employed my morning.”

“I can’t imagine. | suppose that you have been watching the
habits, and perhaps the house, of Miss Irene Adler.”

“Quite so; but the sequel was rather unusual. I will tell you, ...
soon found Briony Lodge. It is a bijou villa, with a garden at the
back, but built out in front right up to the road, ...

Stimulus

Representation
IJCAI 2023: DL for Brain Encoding and Decoding

Decoding fMRI

Haiguang Wen et al,
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What iS Bra N « Can we reconstruct the stimulus, given the brain

response?

DECOdmg? * Can you read the mind with fMRI?

* Or at least tell what the person saw?

Visual Task
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output

2. Feature fusion

Li n g u i St i C BERT Encoder
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~ Outline

* Introduction to Brain Decoding

e Decoding models
* Linear Models
* Non-Linear Models (including DNNs)
e Evaluation Metrics

* Language
* Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Linear Decoder Models
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Non-Linear Decoder
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Evaluating Decoding Models: Pairwise Accuracy

it" Concept jth Concept
Word Word

"Ar\apartmentjs a self-contained "Arson is the—crigynal act of
home Tat™s part of a building." burning a g)or wildland."
< - EEE -
Text semantic AN "' Textsemantic
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Evaluating Dggecoding Models: Rank Accuracy
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Representational Similarity Matrix (RSM)

Representational Similarity Matrix
from Visual Cortex (fMRI)

Scene | Scene

Scene20 | 26 | .17 | 54 |~

corr(Scenel,
Scen2)
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Representational Dissimilarity Matrix (RDM)
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Representation Similarity Analysis

Brain activity
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” Outline

* Introduction to Brain Decoding

* Decoding models
* Linear Models
* Non-Linear Models (including DNNs)
* Language
e Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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* Linguistic Brain Decoding

e Toward Word-level Universal Brain Decoder

* Does injecting linguistic structure into language models lead to better
alignment with brain recordings?

* Multi-view and Cross-view Decoding

IJCAI 2023: DL for Brain Encoding and Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Classical Decoders

* Classical decoding solutions extracting linguistic meaning from imaging data
have been largely limited to
* concrete nouns,
* using similar stimuli for training and testing,
* small number of semantic categories.

Category Exemplar1 Exemplar 2
animals bear cat
body parts arm eye
buildings apartment barn
building parts arch chimney
clothing coat dress
furniture bed chair
insects ant bee
2 Q, X airplane kitchen utensils bottle cup
ﬁl/ \L man made objects bell key
; dog tools chisel hammer
" vegetables carrot celery
* vehicles airplane bicycle

Mitchell et al. 2008
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Toward a universal decoder

* Presented a new approach for building a brain decoding system:
e words and sentences are represented as vectors in a semantic Space constructed from

massive text corpora.

e wide variety of both concrete and abstract topics from two separate datasets.
* subject reads naturalistic linguistic stimuli on potentially any topic, including abstract

ideas (ex., pleasure, justice, love, etc).
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" Dataset Details (Experiment-1)

Concept
Word

1. The bird flew around the cage.

2. The nest was just big enough for the bird.
3. The only bird she can see is the parrot.
4. The bird poked its head out of the hatch.
5. The bird holds the worm in its beak.

6. The bird preened itself for mating.

| N
Nest
Flock
Matin
Beak g
Winged
\. J/

Periera et al. 2018

Wash

1. To make the counter sterile, wash it.
2. The dishwasher can wash all the dishes.

3. He likes to wash himself with bar soap.

4. She felt clean after she could wash herself.

6. The maid was asked to wash the floor.

| N |
Clean
Shower
Sink Wash
Soap Laundry

J

IJCAI 2023: DL for Brain Encoding and Decoding

Unaware

1. She was unaware of how oblivious he really was.
2. She was unaware of her status.
3. Unprejudiced and unaware, she went full throttle.

4. Unaware of current issues, he is a terrible candidate.
5. You have to wash your laundry beforehand. 5. He was unaware of how uninterested she was.

6. He was unaware of the gravity of the situation.

Unprepared

Unwilling

Unprotected

Unaware
Inexperienced

Unconcerned

Concept +

I:> Sentence View

:> Concept +

Picture View

Concept +

I:> Wordcloud
View
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Dataset Details (Experiment-1)

* 180 Concepts
* 128 nouns
e 22 verbs
e 29 adjectives
* 1 function word

* 16 subjects
e AAL atlas (180 regions)
e Gordon atlas (333 regions)

Periera et al. 2018 IJCAI 2023: DL for Brain Encoding and Decoding



“Dataset Details (Experiments 2 and 3)

Topic Concept Topic
' : Experiment 3:
W @) Skiing (passage 1) _Gambling (passage 1 ! D
clannet 1s a woodwind musical instrument. | hesitantly skied down the steep trail en T decided to start playing cards, things
It is a long black tube with a flare at the bottom. that my buddies convinced me to try. went from bad to worse. Gambling was
The player chooses notes by pressing keys and holes. | made a bad turn, and | found myself something | had to do, and | had already
The clarinet is used both in jazz and classical music. tumbling down. | finally came to a stop spent close to $10,000 doing it. My friends
at a flat part of the slope. My skis were were sick of watching me gamble my savings
Musical instrument nowhere to be found, and my poles away. The hardest part was the horror of leavin
An accordion is a portabfermasical instrument were lodged in a snow drift up the hill. a casino after losing money | did not have.
yvith Mo keyboards. One keyboard is used fo_r Skiing (passage 2) Gambling (passage 2)
individual floies, t_he gihertorchers: /_\ocordlons A major strength of professional skiers Good data on the social and economic effects
produce sound with bellow that blow air through is how they use ski poles. Proper use of of legalized gambling are hard to come by.
reeds. An accordionist plays both keyboards ski poles improves their balance and Some studies indicate that having a casino
while'opening.and ciosing the bellows. adds flair to their skiing. It minimizes nearby makes gambling problems more likely.
Musical instrument the need for upper body movements Gambling-may also be‘associated with personal
The piano is a populTmasial instrument to regain lost balance while skiiing. bankruptcies and marriage problems.
played by means of a keyboard. Pressing a Skiing (passage 3) Gambling (passage 3)
p'lano'key e felt-tupp.ed hammer.to hita New ski designs and stiffer boots let Over the past generation, there has been
vibrating steel string. The piano has an enormous skiers turn more quickly. But faster and a dramatic expansion of legalized gambling.
flote range, and pedals o change the sound tighter turns increase the twisting force Most states have instituted lotteries, and

quality. The piano repertoire is large, and

NS : on the legs. This has led to more injuries, many have casinos as well. Gambling has
famous pianists can give solo concerts.

particularly to ligaments in the skier's knee. become a very big but controversial business.

Periera et al. 2018 IJCAI 2023: DL for Brain Encoding and Decoding



‘Thformative Voxel Selection

Correlation across

Stimulus: /feature dimensions Stimulus:
Apartment Pearson Correlation (R) = Corr(Y, Apartment
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: Pairwise and Rankwise Results

a Experiment 1 1 Experiment 2 Experiment 3 b Rank accuracy (3 experiments)
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Decoder built from Expt 1 could distinguish sentences at all levels of granularity

Universal Decoder!
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Distribution of Informative Voxels

Fraction of 5000 informative voxels in each network
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Language Default Task Visual Other
5000 informative voxels are roughly evenly Brain activation

distributed among the four networks
Overall, LN contains a relatively higher proportion of

informative voxels, compared to its size!
IJCAI 2023: DL for Brain Encoding and Decoding

patterns consistent
across 16 Ss

Periera et al. 2018
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Insights

* Presented a viable approach for building a universal decoder, capable of
extracting a representation of mental content from linguistic materials.

* The semantic resolution of brain-based decoding of mental content will
continue to improve rapidly

* given the progress in the development of distributed semantic representations

, IJCAI 2023: DL for Brain Encoding and Decoding
Periera et al. 2018



“Linguistic Brain Decoding

* Toward Word-level Universal Brain Decoder
* Linking artificial and human neural representations of language

* Multi-view and Cross-view Decoding

IJCAI 2023: DL for Brain Encoding and Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022



1 inking artificial and human neural representations of

language

fMRI

Sentence

the bird
flew

Human brain activity

Gauthier et al. 2019

Ridge
Regression

Decoder

IJCAI 2023: DL for Brain Encoding and Decoding

Neural network models

Sentence

the bird
flew

Sentence vector

‘ 1 ||

Task-specific output

voleée

l’oiseau a

Evaluate the link between
human brain activity and
neural network models as
the models are optimized
for different tasks.

To investigate why these
mappings are successful?

* Uncovering the parallel
representational contents
shared between human
brains and neural
networks
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Pretrained vs. Task-specific language models

BERT
g =

| —

\_ sentence(s) )

pre-trained BERT

Devlin et al. 2019 Cogsci-2022: DL for Brain Encoding and Decoding
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Pretrained vs. Task-specific language models

Natural Language Understaning Tasks
 Paraphrase

. @tion Answerin

* Sentiment Analysis

* Natural Language Inference

Article: Endangered Species Act

Paragraph: “ ... Other legislation followed, including
the Migratory Bird Conservation Act of 1929, a 1937
treaty prohibiting the hunting of right and gray whales,
and the Bald Eagle Protection Act of 1940. These later
laws had a low cost to society—the species were rela-
tively rare—and little opposition was raised.”

BERT
E =

LJ

\_ sentence(s) )

pre-trained BERT

BERT
=

—
se nte nce(s) / Question 2: “What was the name of the 1937 treaty?”

Plausible Answer: Bald Eagle Protection Act

Question 1: “Which laws faced significant opposition?”
Plausible Answer: [ater laws

fine-tuned BERT Squad-2.0: Question Answering

Devlin et al. 2019, Bowon et al. 2020 IJCAI 2023: DL for Brain Encoding and Decoding



Custom Tasks

* Scrambled language modeling:

* LM-scrambled: deals with sentence inputs where words are shuffled within
sentences

e LM-scrambled-para, uses inputs where words are shuffled within their containing
paragraphs in the corpus.

This is Los Angeles. And it's the height of
summer. In a small bungalow off of La Cienega,

Fingers are used for grasping, writing, grooming
Clara serves homemade chili and chips in red
plastic bowls -- wine in blue plastic.

re used 0‘1@0@%w This is Los Angeles. And the heig @ mmer.
and other activities. In of La Cienega, Clara serves

and other activities.

homemade chili and chips in red plastic bowls --
wine in blue plastic.

Gauthier et al. 2019 IJCAI 2023: DL for Brain Encoding and Decoding 108
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Brain decoding performance

oo
o

ean average ra nk
h
(=]

Scrambled language models have
shown better performance!!

Gauthier et al. 2019 IJCAI 2023: DL for Brain Encoding and Decoding



‘Brain decoding performance trajectories over fine-tuning
time
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Summary

* Set of scrambled language modeling tasks which best match the structure of
brain activations among the models tested.

* models optimized for LM- scrambled and LM-scrambled-para — the models which
improve in brain decoding performance

Gauthier et al. 2019 IJCAI 2023: DL for Brain Encoding and Decoding



“Linguistic Brain Decoding

* Toward Word-level Universal Brain Decoder
* Linking artificial and human neural representations of language (contd)

* Multi-view and Cross-view Decoding

IJCAI 2023: DL for Brain Encoding and Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Continuous Language Decoder

L Proposed Candidates
Feature l Candidates continuations R _ _(t_+_1_) ~
extraction Encoding (t) A Encoding [Fawall.
) model : L»| dog with model I:l:lj : dog with |!
. - - - isawa — - i [
I do — |
- -1.5-32 0.6 g : 1.5 0.6 1
grew m! | | Saw a .:. \ Isaw a ||
up 2.8 1.5 dog and 2.8 1.5 P SOLD || bigdog '
n@] x [ ) = s LM % [ 500 ] = | e—— |
a 0.2 2.1 22 h — 0.2 21 22 aE =T s
reaky :IEI 0.3 0.9-27 isawa | T LP9 909 0.3 09 -27 / dog and
b9 1 [ isawa g » Likelihood isawa
big truck T big truck

Tang, LaBel, Jain & Huth (2023) IJCAI 2023: DL for Brain Encoding and Decoding
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Continuous Language Decoder

C Actual stimulus Decoded stimulus
i got up from the air mattress and pressed my face against i just continued to walk up to the window and open the
the glass of the bedroom window expecting to see eyes glass i stood on my toes and peered out i didn’t see
staring back at me but instead finding only darkness anything and looked up again i saw nothing
i didn't know whether to scream cry or run away instead i started to scream and cry and then she just said i told you { Exact
said leave me alone i don't need your help adam to leave me alone you can't hurt me i'm sorry and then he ;

disappeared and i cleaned up alone crying stormed off i thought he had left i started to cry

that night i went upstairs to what had been our bedroom we got back to my dorm room i had no idea where my bed

and not knowing what else to do i turned out the lights and was i just assumed i would sleep on it but instead i lay

lay down on the floor down on the floor
i don't have my driver's license yet and i just jumped out she is not ready she has not even started to learn to drive

right when i needed to and she says well why don't you yet i had to push her out of the car i said we will take her

come back to my house and i'll give you a ride i say ok home now and she agreed

Tang, LaBel, Jain & Huth (2023) IJCAI 2023: DL for Brain Encoding and Decoding
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Continuous Language Decoder

d ®S1 ©S2 ®S3 []Chance
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Similarity metric
Tang, LaBel, Jain & Huth (2023) IJCAI 2023: DL for Brain Encoding and Decoding
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Summary

* Continuous language representations of semantic meaning can be decoded
(reconstructed) from non-invasive brain recordings (fMRI),

* Given novel brain recordings, decoder generates intelligible word sequences
that recover the meaning of perceived speech, imagined speech, and even
silent videos, demonstrating that a single language decoder can be applied to
a range of semantic tasks.

* Exciting possibility enabling future multipurpose brain-computer interfaces!

Tang, LaBel, Jain & Huth (2023) IJCAI 2023: DL for Brain Encoding and Decoding



“'Linguistic Brain Decoding

* Toward Word-level Universal Brain Decoder
* Linking artificial and human neural representations of language

* Multi-view and Cross-view Decoding

IJCAI 2023: DL for Brain Encoding and Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022
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Multi-view and Cross-ViewBrain Decoding

* Human brains have the unique capability of language _
acquisition:
* the process of learning the language 1. The bird flew around the cage. _
e understand the meaning of concepts from multiple 2. The nest was just big enough for the bird.

3. The only bird she can see is the parrot.
4. The bird poked its head out of the hatch.
5. The bird holds the worm in its beak.

6. The bird preened itself for mating.

modalities such as images, text, speech, and videos.

* Prior works focus on single-view brain decoding using traditional
feature engineering.

* However, how the brain captures the meaning of linguistic stimuli
across multiple views is still a critical open question in
neuroscience.

e Consider three different views of the concept bird:
* (1) sentence using the target word,

' Nest
* (2) picture presented with the target word label, and Flock

* (3) word cloud containing the target word along with other | Bird
semantically related words.

a Mating
: : : : i Beak
 Earlier works have explored which of these three different views | o

, : : . | Winged
provides richer information to understand the concept. noe

Oota et al. 2022 IJCAI 2023: DL for Brain Encoding and Decoding
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Multi-view decoding

Sentence View
Picture View
Wordcloud View

Room Window

MYV Decoder

Apartment

Floor

BERT(Apartment)

MV Decoder

Picture
View

.@ The dishwasher

Sentence |:> can wash all the
View dishes.

BERT(Bird)

MYV Decoder

BERT(Wash)

-
-
-
-
-

Oota et al. 2022 IJCAI 2023: DL for Brain Encoding and Decoding
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Multi-view decoding results
Plcture Sentence WordCloud
View 5 turos Boct E:) View E:) View
Sentences
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Distribution of Informative Voxels

® Word + Pictures (WP) ™ Sentences (S) ™ Wordclouds (WC)

o
U

©
o

o
w

o
N

o
|_I.

% Informative Voxels

o

Oota et al. 2022

IJCAI 2023 : DL for Brain Encoding and Decoding
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Picture
E:) View

¥ 1 &

Cross-View
IC Decoder
BERT

=T T [
A colorful bird sitting on a tree
branch.

(A) Image Captioning (IC)

|:> Caption

Oota et al. 2022

Cross-view Decoding

Picture
View

Cross-View
IT Decoder

Bird, Colorful, Branch, Sitting,
Red, Tree

(B) Image Tagging (IT)

Wordcloud
E> View

o “(—<\'/—\7/_‘\'» ‘l.
/" Nest Fock O *

Bird Xy N
(" Beak = 5
— i d Red _/‘
& Inge//,.._

Cross-View
SF Decoder

BERT |m)

A flock of red birds resting in
their nest.

(C) Sentence Formation (SF)

I:> Visual words |:> Sentence

IJCAI 2023: DL for Brain Encoding and Decoding

|:> Sentence
View

Asmall red bird
sitting on a snow- ., §
covered ground.

Cross-View
KE Decoder

Bird, Snow, Ground, Red,
Sitting, Small

(D) Keyword Extraction (KE)

= Keywords
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Cross-view Decoding results

W Image Captioning W Image Tagging W Image Captioning W Image Tagging
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Summary

* Cross-view and Multi-view decoding tasks establish that the information
contained in the brain response is rich and capable of driving multiple
downstream tasks.

Oota et al. 2022 IJCAI 2023: DL for Brain Encoding and Decoding



“Linguistic Brain Decoding

* Toward Word-level Universal Brain Decoder
* Linking artificial and human neural representations of language

* Multi-view and Cross-view Decoding

IJCAI 2023: DL for Brain Encoding and Decoding

Periera et al. 2018, Gauthier et al. 2019, Huth et al. 2023, Oota et al. 2022



Agenda

* Introduction to Brain encoding and decoding [30 min]
* Stimulus Representations [1 hour]

e Coffee break [30 min]

* Deep Learning for Brain Decoding [1 hour 30 min]

* Lunch break [1 hour 30 min]

* Deep Learning for Brain Encoding [1 hour 30 min]

* Coffee break [30 min]

* Advanced Methods [1 hour 15 min]

 Summary and Future Trends [15 min]

1JCAI 2023: DL for Brain Encoding and Decoding 126



127

References

Pereira, Francisco, et al. "Toward a universal decoder of linquistic meaning from brain activation." Nature communications 9.1

(2018).

Sun, Jingyuan, et al. "Towards sentence-level brain decoding with distributed representations." Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33. No. 01. 2019.

Affolter, Nicolas, et al. "Brain2word: decoding brain activity for lanquage generation." arXiv preprint arXiv:2009.04765 (2020).

Abdou, Mostafa, et al. "Does injecting linquistic structure into lanquage models lead to better alignment with brain
recordings?." arXiv preprint arXiv:2101.12608 (2021).

Sun, Jingyuan, et al. "Neural encoding and decoding with distributed sentence representations." IEEE Transactions on Neural
Networks and Learning Systems 32.2 (2020): 589-603.

Oota, Subba Reddy, et al. "Cross-view Brain Decoding." arXiv preprint arXiv:2204.09564 (2022).
Gauthier, Jon, and Roger Levy. "Linking artificial and human neural representations of lanquage." EMNLP/IJCNLP (1). 2019.

Shen, Guohua, et al. "Deep image reconstruction from human brain activity." PL0oS computational biology 15.1 (2019):
e1006633.

Beliy, Roman, et al. "From voxels to pixels and back: Self-supervision in natural-image reconstruction from fMRI." Advances in
Neural Information Processing Systems 32 (2019).

Shen, Guohua, et al. "End-to-end deep image reconstruction from human brain activity." Frontiers in Computational
Neuroscience (2019): 21.

IJCAI 2023: DL for Brain Encoding and Decoding


https://www.nature.com/articles/s41467-018-03068-4
https://www.nature.com/articles/s41467-018-03068-4
https://www.nature.com/articles/s41467-018-03068-4
https://www.nature.com/articles/s41467-018-03068-4
about:blank
about:blank
about:blank
about:blank
https://arxiv.org/abs/2009.04765
https://arxiv.org/abs/2101.12608
https://arxiv.org/abs/2101.12608
https://ieeexplore.ieee.org/abstract/document/9223750/
https://ieeexplore.ieee.org/abstract/document/9223750/
https://arxiv.org/abs/2204.09564
about:blank
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006633
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006633
https://proceedings.neurips.cc/paper/2019/hash/7d2be41b1bde6ff8fe45150c37488ebb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7d2be41b1bde6ff8fe45150c37488ebb-Abstract.html
https://www.frontiersin.org/articles/10.3389/fncom.2019.00021/full?ref=https://githubhelp.com
https://www.frontiersin.org/articles/10.3389/fncom.2019.00021/full?ref=https://githubhelp.com

128

References

* Nishimoto, Shinji, et al. "Reconstructing visual experiences from brain activity evoked by natural movies." Current
biology 21.19 (2011): 1641-1646.

* Anumanchipalli, Gopala K., Josh Chartier, and Edward F. Chang. "Speech synthesis from neural decoding of spoken sentences."
Nature 568.7753 (2019): 493-498.

e Schrimpf, Martin, et al. "The neural architecture of language: Integrative modeling converges on predictive processing." Proceedings
of the National Academy of Sciences 118.45 (2021): e2105646118.

* Wehbe, Leila, et al. "Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses." PloS
one 9.11 (2014): e112575.

IJCAI 2023: DL for Brain Encoding and Decoding


https://www.sciencedirect.com/science/article/pii/S0960982211009377
https://www.sciencedirect.com/science/article/pii/S0960982211009377
https://www.sciencedirect.com/science/article/pii/S0960982211009377
https://www.sciencedirect.com/science/article/pii/S0960982211009377
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Deep Learning for Brain
Encoding and Decoding

Subba Reddy Oota?, Manish Gupta?3, Raju S. Bapi?, Mariya Toneva*

Inria Bordeaux, France; ?llIT Hyderabad, India; 3Microsoft, India; *MPI for Software Systems, Germany

subba-reddy.oota@inria.fr, gmanish@microsoft.com, raju.bapi@iiit.ac.in, mtoneva@mpi-sws.org




Agenda

- Introduction to Brain encoding and decoding [30 min]
. Stimulus Representations [1 hour 30 min]

. Coffee break [30 min]

- Deep Learning for Brain Decoding [1 hour 30 min]
 Lunch break [1 hour 15 min]

- Deep Learning for Brain Encoding [1 hour 30 min]

. Coffee break [30 min]

- Advanced Methods [1 hour 15 min]

- Summary and Future Trends [15 min]
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- Deep Learning for Brain Encoding [1 hour 30 min]
. Classic findings & common approaches
. More recent findings utilizing deep learning

. Coffee break [30 min]
- Advanced Methods [1 hour 15 min]
- Summary and Future Trends [15 min]
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Mechanistic understanding of information processing in
the brain: 4 big questions

What

Words #
Nonwords

A
v

0 400 800

High-order

(eg. namative)  Medial-temporal lobe
(consolidation processes)

Processing hierarchy

Sensory
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Encoding models have a causal interpretation

( @ )

o

[N “
Ik
“The problem is when the

capsule moves from an
elliptical orbit to a

parabolic orbit.”

| /

Reveal which brain areas are affected
by stimulus properties [weichwald et al. 2015]

ytrain

— ‘ Train ~ f(<0],.. )= ‘
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N
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Part of Speech: ,"—\Sg;:;lrl:?es
Neungg 1 0> ‘oo wlar
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Classic findings using encoding models

« Using representations of stimuli not from deep learning
e Language:
« Mitchell et al. 2008, Science
e Vision:
« Kay et al. 2008, Nature
« Audio:
« Santoro et al. 2014, PLoS Comp Bio
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Classic encoding model finding: Language

- Stimuli: concrete nouns + line drawings (A
' i bear _
- Stimulus representation: corpus co-occurrerice counts with 25 sensory-motor verbs (e.g. see,
hear, taste, smell)

Tactile Manipulation

elements Spatiomotor
28 ) elements

Empirical evidence for distributed organization for
attributes related to:

e audition [Kiefer et al., 2008]
e color [Simmons et al., 2007]
e shape [Chao et al., 1999]

e motion [Damasio et al., 1996]

figure from Kemmerer, 2014; adapted from Thompson- e olfaction and taste [Goldberg, Perfetti, et al., 2006a; Goldberg,
Schill et al. 2006 Perfetti, et al., 2006b]

[Barsalou, 1999; Barsalou, 2008; Pecher et al., 2005]

Adction-oriented
elements

Visual
elements

Auditory
elements

Mitchell, Tom M., Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L. Malave, Robert A. Mason, and Marcel Adam Just. "Predicting human brain activity associated with the meanings of nouns." science 320, no. 5880 (2008): 1191-1195.
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Classic encoding model finding: Language

- Stimuli: concrete nouns + line drawings A
. . bear ,
- Stimulus representation: corpus co-occurrerice counts with 25 sensory-motor verbs (e.g. see,

hear, taste, smell)

- Brain recording: fMRI

Generative theory
o Correspondences

: between a semantic

property (“push”) and

the function of the

cortical regions where

predicted activity Participant

‘telephone — — for “telephone” P1

+ Q00000

Statistical features  Mapping learned MG Gi6T the fMRI recordi Ngs are
from a trillion-word  from fMRI data ol q
text corpus participants well predicted
ACC u rate Iy p red iCtS fM R I reco rd | ngS fO ra Pars opercularis Postcentral gyrus Superior temporal
(z=24 mm) (z=30 mm) sulcus (posterior)
novel word (z=12mm)

Mitchell, Tom M., Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L. Malave, Robert A. Mason, and Marcel Adam Just. "Predicting human brain activity associated with the meanings of nouns." science 320, no. 5880 (2008): 1191-1195.
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Classic encoding model finding: Vision

- Stimuli: natural images Encoding models estimated quantitative

. Stimulus representation: mixtures of Gabor wavelets TREE(plE elels ey Wi vl

e Brain recording & modality: fMRI, viewing |dentified which of a set of candidate
natural image was viewed by a participant

-

Stage 1: Model estimation

Estimate a receptive field model for each voxel a

Subject S1, Voxel 42205, Area V1

VW

?@ i: JI

i Orlentatlon
- x -1
W Responses

Spatial frequency (cycles/®)

Images

o * o *
2 Z
<] <]
;
[
. @ @
0 0
Receptive field model for one voxel T R TR TR
Orientation (°) Spatial frequency (cycles/®)

Kay, Kendrick N., Thomas Naselaris, Ryan J. Prenger, and Jack L. Gallant. "Identifying natural images from human brain activity." Nature 452, no. 7185 (2008): 352-355.
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Classic encoding model finding: Audio

MTF-based models

A1 Joint freqency-specific .
A
« Stimuli: natural sounds (speech, music, nature, tools) Jonitocuaon | [ 2 "
across time '
"§ Py, T and direction
« Stimulus representation: spectro-temporal filters that are —E o ees H ——
. . . a 17,801 oint fregency non-specific
selective for modulations along space and/or time 05 HZARNY > ]
o (Hz) = Average across — f
time, direction, 05
e Brain recording & modality: fMRI, listening .
Temporal Modulation B1 Independent frequency-specific
selective filters 2 .
spati tempor _ Speotogan | | MHECIE wasge T E !
SM CT™M . ] % o (Hz) seressme 0¥G57 24 1592
posterior/dorsal auditory: | soocattiosuion || (55 = =
. 80, selective filters Independent frequency non-specific
coarse spectral info & e 1| | aeem 5 E
high temporal precision N R Average across ™ <.
Q (cycloct) time and 051 2 4 13 927
frequency Q o)
anterior/ventral auditory: c Tonotopy model
fine-grained spectral & ’
o0 o L 2 . g
High CSM High CTM low temporal precision e
Low CSM Low CTM S Freaency (kHo)

Sarlt‘cl)ro 1R86)§£{tlaz Michelle Moerel, Federico De Martino, Rainer Goebel, Kamil Ugurbil, Essa Yacoub, and Elia Formisano. "Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex.” PLoS computational biology 10, no. 1
(2014): e .
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Deep learning models enable data-driven encoding

models for naturalistic stimuli

more naturalistic more stimulus
stimuli properties that affect
brain af_"x
i [
\\_’/

simple stim. representations
explain less variance in brain

“H<On... )~ ‘
O>

DeepMind’s New Al Taught Itself to Be the World’s Greatest Go Player

Meet GPT-3. It Has Learned to Code (and Blog and Argue)
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Data-driven encoding models evaluate the relationships
between brains and deep learning models

Multimodal Deep learning A priori locations in Data-driven
naturalistic system DL system and brain encoding model

stimulus

how are
they
related?
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Encoding: training and evaluation

functiorf often modeled as linear

[Mitchell et al. 2008, Nishimoto et al., 2011;
Sudre et al., 2012; Wehbe et al., 2014]

Learn a function f

fleee)-

Traditional approach: Proposed approach:
specify estimate
research goal mapping type mapping complexity
1 1 individual f | LNEAR [
1€ inc
— Low |
Considerations for | :
COMPLEXITY
. incorporate measurement-related i 0 PREFERRED |
Linear vs non- e
I o simulate neural readout ‘\ LINEAR J
test a correspondence (
between representational spaces ‘ LINEAR
compare feature sets ‘ LINEAR |
examine the feature set (as a whole) \ LINEAR
p N HIGH
decode features from neural data ‘ LINEAR | COMPLEXITY
& OK
build maximally accurate ( ]
models of brain data ‘ NONLINEAR J ‘
Ivanova, Anna A., Martin Schrimpf, Stefano Anzellotti, Noga Zaslavsky, Evelina [:J predictive accuracy D interpretability D biological plausibility
Fedorenko, and Leyla Isik. "Is it that simple? Linear mapping models in

cognitive neuroscience.” bioRXiv
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Encoding: training and evaluation

functior:l'j often modeled as linear

[Mitchell et al. 2008, Nishimoto et al., 2011;
Sudre et al., 2012; Wehbe et al., 2014]

Learn a function f

f(eoe)~ 8D

Training: cross validation (CV), regularization parameter chosen via nested CV

Evaluation: 1) make predictions for heldout data
2) compare predictions with true brain data
3) stringent statistical testing
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Encoding: training setup

Learn function f
voi)-@
. Goal: find a mapping from stimulus

representation to brain data that f( ‘

generalizes to new brain data Test how well f

recordings

predicts unseen brain

. Method:
o Split dataset into train, validation, and test

o Employ cross-validation to select model parameters based on validation dataset

o Reduce overfitting by using regularization

m Ridge regularization
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Encoding: training independent models

Independent model per participant

D1 D9

f(”')%‘ f(ooc)m‘

Independent model per voxel / sensor-timepoint

P1,vl P1, v2

f(ooo)z‘ f(ooo)z‘
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Encoding: fMRI specifics

“...I reached over ?
and slowly undid
my seatbelt...’ o '
P
* corr(R, R)
* 18 8o 291
128 .. 1150 HEEE RN
1(@08-------- ) 1 HE@ENE -
reached (=~ -------- )2 8%%%%83
........ 3 - .
Z‘fé% ________ %4 Ridge oDooooo|.
siowly (- )5 regression |- 5 5 0 H
undid (C © - )6 (P' EEEEBE|-
: BerPY |gooooaol
EEEEE N -
cigarettes (0 © G- ------- ') 1839 EEEEEB YV
Stimulus representations Predicted Response
W € R0 P) R € Rr V)

Jain, Shailee, Vy Vo, Shivangi Mahto, Amanda LeBel, Javier S. Turek, and Alexander Huth. "Interpretable multi-timescale models for predicting fMRI responses to continuous natural speech." Advances in Neural Information Processing Systems 33 (2020): 13738-

13749.
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Encoding: evaluation setup

. Predict data heldout from training by applying learned function to
corresponding stimulus representations

. Compare predictions of brain data to true brain data:

o Evaluation metrics
Leam function f
0. 0 ‘

-4

Test how WeII predicts unseen brain
recordings
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Encoding: evaluation metrics

Pearson
correlation

Wav2Vec 2.0

Transformer;,

»’;m)»»—u

TSN SO for "dog"
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True
brain activity
for "dog"
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nce upon a time Once upon a time ...
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Regression
model

T

Stimulus Features
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Time (s)

Millet, Juliette, Charlotte Caucheteux, Pierre Orhan, Yves Boubenec, Alexandre Gramfort, Ewan Dunbar

200

Hdogl!

T

Regression
model

f

brain activity
for "house"

brain activity
for "house"

Stimulus Features

"house"

Toneva, Mariya, Otilia Stretcu, Barnabas Poczos, Leila Wehbe, and Tom M. Mitchell.

Christophe Pallier, and Jean-Remi King. "Toward a realistic model of speech processing in the brain with self-

supervised Iearnlng arXiv preprint arXiv:2206.01685 (2022).

"Modeling task effects on meaningd representation in the brain via zero-shot me iction.”
Advances in Neural Information Processing Systems 33 (2020): 5284-5295.
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Encoding: statistical significance

« Goal: determine whether the estimated similarity between the DL representations
and the brain recordings is significant

« Simple method that makes no assumptions about underlying data:
e Permutation test
Break input-to-output correspondence by permuting output labels
- Estimate similarity
- Repeat 1000s times to estimate null distribution
P-value = proportion of times the similarity metric from permuted labels >= sim.
metric from original labels
e Specifically for fMRI:
-  Permute labels in blocks to preserve the autoregressive structure

e Correct for multiple comparisons
e FDR, FWER, etc.
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Encoding: performance visualization

fMRI MEG/EEG

B Maximum Intensity Projection

0to 50 ms 50 to 100 ms 100 to 150 ms 150 to 200 ms

200 to 250 ms 250 to 300 ms

Single Slice
Inflated Surface
Gao lJ_amefs Sﬁ\/leelxna_rgdert_G. Hqth Mar_k fD Les%_roa{%oigg J233Ck L. Gallant. "Pycortex: an interactive surface Gramfort, Alexandre, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian Brodbeck,
visualizer for -_Trontiers in neuroinformatics 123 Roman Goj et al. "MEG and EEG data analysis with MNE-Python.™ Frontiers in neuroscience (2013): 267.
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. Classic findings & common approaches
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- Summary and Future Trends [15 min]
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More recent work utilizing progress in DL for encoding

« Using representations of stimuli from deep learning systems
- Language:

« Wehbe et al. 2014; Jain and Huth, 2018; Toneva and Wehbe, 2019; Caucheteux and
King, 2020/2022; Schrimpf et al. 2020/2021; Goldstein et al. 2021/2022

e Vision:

« Yamins et al. 2014; Cichy et al. 2016; Konkle and Alvarez, 2020/2022; Zhuang et al. 2022
« Audio:

« Kell et al. 2018; Vaidya, Jain, and Huth 2022; Millet et al. 2022
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Language: work utilizing DL progress

« Stimuli: one chapter of Harry Potter

« Stimulus representation: derived from an NLP system (RNN) trained on Harry Potter fan

fiction

e Brain recording: MEG, reading

Visual feature Letter-string Lexical-semantic
analysis analysis analysis

Words #
Nonwords

0 400 800 0 400 800 0 400 800

Time (ms)

significant word-by-word alignment between MEG
& representations of words and context from
recurrent NLP systems

Subject 1 Subject 2 Subject 3
0.8 0.8 0.8 I\P/\w
0.6 0.6 E 0.6 ﬁ\,\/
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—hidden layer ==output probability =~embeddings

Wehbe, Leila, Ashish Vaswani, Kevin Knight, and Tom Mitchell. "Aligning context-based statistical models of language with brain activity during reading." In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 233-243. 2014.
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Audio: work utilizing DL progress

« Stimuli: Moth Radio Hour

« Stimulus representation: derived from self-supervised text language model trained to predict
upcoming word in other radio stories

e Brain recording & modality: fMRI, listening

—— Layer1 —— Layer 2 —— Layer 3
t Embedding

(a)

Encoding Model Performance

||||||||||||||||||||
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Preferred context length
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°
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Jain, Shailee, and Alexander Huth. "Incorporating context into language encoding models for fMRI." Advances in neural information processing systems 31 (2018).
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Language: work utilizing DL progress

« Stimuli: one chapter of Harry Potter
« Stimulus representation: derived from pretrained NLP systems

e Brain recording & modality: fMRI, reading

—— layerl  —— layer2
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Toneva, M., & Wehbe, L. (2019). Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain). Advances in Neural Information Processing Systems, 32.
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Language: work utilizing DL progress

best alighment with fMRI &
. . MEG in middle layers
« Stimuli: sentences
better performance at

« Stimulus representation: derived from pretrained NLP systems oredicting next word -> better

. . . . rediction of fMRI & ME
« Brain recording & modality: MEG & fMRI, reading P &
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Caucheteux, Charlotte, and Jean-Rémi King. "Brains and algorithms partially converge in natural language processing." Communications biology 5, no. 1 (2022): 1-10.
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Language: work utilizing DL progress

« Stimuli: sentences, passages, short story

« Stimulus representation: derived from pretrained NLP systems .
some NLP systems can predict

fMRI and ECoG up to 100% of
estimated noise ceiling

e Brain recording & modality: fMRI & ECoG, reading & listening
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Schrimpf, Martin, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A. Hosseini, Nancy Kanwisher, Joshua B. Tenenbaum, and Evelina Fedorenko. "The neural architecture of language: Integrative modeling converges on predictive processing." Proceedings of the National Academy of
Sciences 118, no. 45 (2021): e2105646118.
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Language: work utilizing DL progress

o Stimuli: story
« Stimulus representation: derived from pretrained NLP systems

e Brain recording & modality: ECoG, listening

a b Embeddings (50 d)
0.49 mmmmm Contextual (GPT-2)
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Goldstein, Ariel, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A. Nastase et al. "Shared computational principles for language processing in humans and deep language models." Nature neuroscience 25, no. 3 (2022): 369-380.
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Recent work utilizing progress in DL for encoding

« Using representations of stimuli from deep learning systems
« Data-driven
« Language:

« Wehbe et al. 2014; Jain and Huth, 2018; Toneva and Wehbe, 2019; Caucheteux and
King, 2020/2022; Schrimpf et al. 2020/2021; Goldstein et al. 2021/2022

e Vision:

« Yamins et al. 2014; Cichy et al. 2016; Konkle and Alvarez, 2020/2022; Zhuang et al. 2022
« Audio:

« Kell et al. 2018; Vaidya, Jain, and Huth 2022; Millet et al. 2022
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Vision: work utilizing DL progress

 Stimuli: images of natural objects

« Stimulus representation: layers in pretrained CNNs

e Brain recording & modality: multiarray recordings in rhesus
macaques, vision

A
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Vision: work utilizing DL progress

 Stimuli: images of natural objects

Layer 1

« Stimulus representation: layers of CNN tuned for
object classification
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Brain recording: fMRI & MEG, vision
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Cichy, Radoslaw Martin, Aditya Khosla, Dimitrios Pantazis Antomo Torralba and Aude Oliva. "Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals
ierarchical correspondence.” Scientific reports :

. NO.
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Vision: work utilizing DL progress
Self-supervised deep models achieve
. o . parity with category-supervised
« Stimuli: images of objects models in predicting fMRI responses

. ) i . along visual hierarchy
« Stimulus representation: layers in self-supervised deep model

« Brain recording: fMRI, vision

a Ventral Stream Hierarchy B Object Orientation Dataset C Inanimate Objects Dataset
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Konkle, Talia, and George A. Alvarez. "A self-supervised domain-general learning framework for human ventral stream representation.” Nature communications 13, no. 1 (2022): 1-12.
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Vision: work utilizing DL progress

« Stimuli: images of objects

« Stimulus representation: layers in self-supervised
deep model A

« Brain recording: multiarray recordings in rhesus -
macaques, vision
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Presentation

Self-supervised deep models
produce brain-like representations
even when trained solely with noisy
data from child head-mounted
cameras
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Zhuang, Chengxu, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C. Frank, James J. DiCarlo, and Daniel LK Yamins. "Unsupervised neural network models of the ventral visual stream." Proceedings of the National

Academy of Sciences 118, no. 3 (2021): €2014196118.
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Recent work utilizing progress in DL for encoding

« Using representations of stimuli from deep learning systems
« Data-driven
« Language:

« Wehbe et al. 2014; Jain and Huth, 2018; Toneva and Wehbe, 2019; Caucheteux and
King, 2020/2022; Schrimpf et al. 2020/2021; Goldstein et al. 2021/2022

e Vision:

« Yamins et al. 2014; Cichy et al. 2016; Konkle and Alvarez, 2020/2022; Zhuang et al. 2022
 Audio:

« Kell et al. 2018; Vaidya, Jain, and Huth 2022; Millet et al. 2022
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Audio: work utilizing DL progress

o Stimuli: natural sounds

« Stimulus representation: deep model
optimized for speech and music recognition

Brain recording & modality: fMRI, listening

B Best-predicting network layer for each voxel Primary auditory
Layer: [ conv3orlower [l convd [l conv5 or higher

responses predicted
best by intermediate
layers of task-
optimized model;
non-primary
responses predicted
best by late layers

A e single voxel’s response
to all

65 natural sounds

165 everyday
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linear regression
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PN . oo network iayer
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< e16: =
B Trained network (selected architecture, trained filters)
! Spectrotemporal model
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55 e b b
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Kell, Alexander JE, Daniel LK Yamins, Erica N. Shook, Sam V. Norman-Haignere, and Josh H. McDermott. "A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy." Neuron 98, no. 3 (2018): 630-644.
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Audio: work utilizing DL progress

e Stimuli: Moth Radio Hour

« Stimulus representation: derived from pretrained self-supervised  Middle layers of self-supervised

Speech models speech models predict auditory
cortex the best

« Brain recording & modality: fMRI, listening
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HUBERT wav2vec 2.0 wav2vec APC R BN T

PC 1 score

Lowest Highest Lowest Highest Lowest Highest Lowest Highest (A)
Contextual Layer Depth Contextual Layer Depth Contextual Layer Depth Layer Depth
(A) WHOLE CORTEX

0 o——
H M 0//-«:_6
2 I o I =
I}
3 E b o e e et
@ F Fr==3
So01s
o
g "
5 0.10 A
g 7% K

9.0 LH lateral g RH lateral
0.00 2 ] O 4002
Lowest Highest  Lowest Highest  Lowest Highest  Lowest Highest (8) § :;:' NA—Q///" °\o\° Q) Eno,, \\
Contextual Layer Depth Contextual Layer Depth Contextual Layer Depth Layer Depth [Recod P9 Topol P00 o o
Enc. 1 2 3 4 5 6 7 8 9 10 11 12 1 3 S 7 $ n u
(B) AUDITORY CORTEX OutpUt T Contexwal Layer Depth > .

Vaidya, Aditya R., Shailee Jain, and Alexander G. Huth. "Self-supervised models of audio effectively explain human cortical responses to speech." ICML (2022).
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https://arxiv.org/pdf/2205.14252.pdf

Audio: work utilizing DL progress

 Stimuli: audio books
« Stimulus representation: derived from pretrained self-supervised speech model

« Brain recording & modality: fMRI, listening in 3 languages (Eng, Fr, Mandarin)

A B C

Humans Models Al and A2 STS IFG Motor
Nat?ve - h ] 1 | 1 - Self-supervised speech models
Nl\c‘;nstzzzs E E E| El; E | reveal specialization for native
Random . ; ; : | sounds in the STS and MTG;
0 ABXacc 10 ABXacc 1 0 R .19 0 R .07 0 R .04 0 R .02

IFG and AG show more general
Native better than specialization for speech rather
non-native speech .

than native-language

. Non-native speech
better than non-speech

. Non-speech better
than random model

. Random model better
than chance

Millet, Juliette, Charlotte Caucheteux, Pierre Orhan, Yves Boubenec, Alexandre Gramfort, Ewan Dunbar, Christophe Pallier, and Jean-Remi King. "Toward a realistic model of speech processing in the brain with self-supervised learning." arXiv preprint arXiv:2206.01685 (2022).
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Agenda

- Introduction to Brain encoding and decoding [30 min]
. Stimulus Representations [1 hour 30 min]

. Coffee break [30 min]

- Deep Learning for Brain Decoding [1 hour 30 min]
 Lunch break [1 hour 15 min]

- Deep Learning for Brain Encoding [1 hour 30 min]
. Classic findings & common approaches
. More recent findings utilizing deep learning

. Coffee break [30 min]
- Advanced Methods [1 hour 15 min]
- Summary and Future Trends [15 min]
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Deep Learning for Brain
Encoding and Decoding

Subba Reddy Oota?, Manish Gupta?3, Raju S. Bapi?, Mariya Toneva*

Inria Bordeaux, France; ?llIT Hyderabad, India; 3Microsoft, India; *MPI for Software Systems, Germany

subba-reddy.oota@inria.fr, gmanish@microsoft.com, raju.bapi@iiit.ac.in, mtoneva@mpi-sws.org




Agenda

- Introduction to Brain encoding and decoding [30 min]
. Stimulus Representations [1 hour 30 min]

. Coffee break [30 min]

- Deep Learning for Brain Decoding [1 hour 30 min]
 Lunch break [1 hour 15 min]

- Deep Learning for Brain Encoding [1 hour 30 min]

. Coffee break [30 min]

- Advanced Methods [1 hour 15 min]

- Summary and Future Trends [15 min]
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Challenges in using DL for cognitive modeling

« Not designed to specifically model brain processing

NLP systems: Designed to predict upcoming

words
Harry never thought ???

Harry never thought he ???

Harry never thought he would ???
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Challenges in using DL for cognitive modeling

« Not designed to specifically model brain processing
Training DL models using brain recordings

Task-based modeling
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Challenges in using DL for cognitive science

« Not designed to specifically model brain processing
Training DL models using brain recordings

Task-based modeling

« Can be difficult to interpret due to multiple sources of information
4 )
part-of-speech
+
semantic role
000 +
dependence on

other words
Harry never thought +

N D
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Challenges in using DL for cognitive science

« Not designed to specifically model brain processing
Training DL models using brain recordings

Task-based modeling

« Can be difficult to interpret due to multiple sources of information

Disentangling contributions of different info sources to brain predictions
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Challenges in using DL for cognitive science

« Not designed to specifically model brain processing
Training DL models using brain recordings

Task-based modeling

« Can be difficult to interpret due to multiple sources of information

Disentangling contributions of different info sources to brain predictions
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Training DL models using brain recordings

« Stimuli: one chapter of Harry Potter

« Stimulus representation: brain-optimized NLP
model

e Brain recording & modality: fMRI & MEG, reading

especially in canonical
language regions

Chapter of a NLP systemn A priori locations in pretrained mm— o ﬁgﬁ':;\‘n';d
book NLP system and brain
— 000 error
A ' Brain-optimized NLP
propagati ptim
iii > X alig@fent model predl.cts unseen
\ fMRI recordings better,

Schwartz, Dan, Mariya Toneva, and Leila Wehbe. "Inducing brain-relevant bias in natural language processing models." Advances in neural information processing systems 32 (2019).
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Training DL models using brain recordings
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Seeliger, Katja, Luca Ambrogioni, Yagmur Guglutirk, Leonieke M. van den Bulk, Umut Giglu, and Marcel AJ van Gerven. "End-to-end neural system identification with neural information flow." PLOS Co
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Training DL models using brain recordings
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Khosla, Meenakshi, and Leila Wehbe. "High-level visual areas act like domain-general filters with strong selectivity and functional specialization.” bioRxiv (2022).
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Training DL models using brain recordings

« Stimuli: images natural scenes

« Stimulus representation: brain-optimized CNN

e Brain recording & modality: fMRI, vision
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Brain-optimized vision
model can learn
representations that do
not follow a strict

hierarchy

St-Yves, Ghislain, Emily J. Allen, Yihan Wu, Kendrick Kay, and Thomas Naselaris. "Brain-optimized neural networks learn non-hierarchical models of representation in human visual cortex.” Nature Communications (2023).
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Challenges in using DL for cognitive modeling

« Not designed to specifically model brain processing
Training DL models using brain recordings

Task-based modeling

« Can be difficult to interpret due to multiple sources of information

Disentangling contributions of different info sources to brain predictions
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Tasks affect processing

Stimuli: natural movies

« Task: visual search for vehicles or humans Categc.)ry-bas.ed
attention during
« Stimulus representation: object and action labels natural vision alters
from WordNet representation of both
e Brain recording & modality: fMRI, vision attended and

. unattended categories | e
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Cukur, Tolga, Shinji Nishimoto, Alexander G. Huth, and Jack L. Gallant. "Attention during natural vision warps semantic representation across the human brain." Nature neuroscience 16, no. 6 (2013): 763-770.
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Tasks affect processing
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Attention emphasizes task-relevant information

Mechanism?

Toneva, Mariya, Otilia Stretcu, Barnabas Péczos, Leila Wehbe, and Tom M. Mitchell. "Modeling task effects on meaning representation in the brain via zero-shot meg prediction.” Advances in Neural Information Processing Systems 33 (2020): 5284-5295.
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Tasks affect processing
The end of

semantic
processing of a

, word is task-
. Task: answer Yes/No tion te dependent word

« Stimuli: concrete nouns + line
drawings

questions about noun 100 to 150 m 50to 100 ms 100 to 150 ms o
. . l ¥
« Stimulus representation: Q U U
human judgments O ‘4
« Brain recording & modality:
MEG, reading %, Q @
@
0 S 0 ms 0 m ms
1@'{;’1 j
OOS i
significant
prediction
performance

Toneva, Mariya, Otilia Stretcu, Barnabas Péczos, Leila Wehbe, and Tom M. Mitchell. "Modeling task effects on meaning representation in the brain via zero-shot meg prediction.” Advances in Neural Information Processing Systems 33 (2020): 5284-5295.
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Tasks affect processing

« Stimuli: sentences
« Task: searching for specific relations
« Stimulus representation: word embeddings

« Brain recording & modality: EEG, reading
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Hollenstein, Nora, Marius Troéndle, Martyna Plomecka, Samuel Kiegeland, Yilmazcan Ozyurt, Lena A. Jager, and Nicolas Langer. "Reading task classification using EEG and eye-tracking data." arXiv preprint arXiv:2112.06310 (2021).
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Tasks affect processing
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Wang, Aria, Michael Tarr, and Leila Wehbe. "Neural taskonomy: Inferring the similarity of task-derived representations from brain activiy. muvaiiceo wiivcuw wnuinuuun + toveoony wyowins o2 (2019).
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Tasks affect processing

« Stimuli: passages and narratives

« Stimulus representation: task-optimized NLP models for a
range of tasks

Reading fMRI best explained by
coref. resolution, NER, shallow
syntax parsing

Listening fMRI best explained by
paraphrasing, summarization,

e Brain recording & modality: fMRI, reading & listening of
different stimuli

NLI
R
[ ]
° E52Eg Q68 3¢

Oota, Subba Reddy, Jashn Arora, Veeral Agarwal, Mounika Marreddy, Manish Gupta, and Bapi Raju Surampudi. "Neural Language Taskonomy: Which NLP Tasks are the most Predictive of fMRI Brain Activity?." arXiv
preprint arXiv:2205.01404 (2022).
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Tasks affect processing

Training language models to
summarize narratives improves

brain alignment, especially
« Stimulus representation: summarization- during important narrative
optimized language models

« Stimuli: one chapter of Harry Potter

elements (Characters,
« Brain recording & modality: fMRI, reading emotions, etc.)

Model trained with inpl‘Jt/ u input Model trained to

language modeling summarize narratives

= base | book _______________
bart booksum I -I [ Summary of chapter -I
- - A u
I jumps I Chapter I In this chapter, ... I
led I T I I I
___pa | | I | | . . |
I Language model ‘ I | model trained to summarize narratives ‘ I
bigbird | T T T T T | | T |
. Chapter fi book
I The QUICk brown fox [MASK] I I It V\zaps zrb:;;:: :olg Zay in April, and the clocks were I
long-t5 I I I |'Ef striking thirteen... I

0 0.005 0.01 0.015 0.02 1

brain alignment (Pearson correlation) activations l activations
~ ~
~~ ~~
Aw, K.L., and Mariya Toneva. Training language models to summarize narratives f( ) f( )
improves brain alignment” ICLR 2023
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Challenges in using DL for cognitive modeling

« Not designed to specifically model brain processing
Training DL models using brain recordings

Task-based modeling

« Can be difficult to interpret due to multiple sources of information

Disentangling contributions of different info sources to brain predictions
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Disentangling contributions ot different info sources to

brain predictions

‘Mary finished the
apple”
supra-word meaning may
contain concept of:
eating
apple core

Isolating supra-word meaning is a
type of intervention

000 2(coa)g(

supra-word
meaning

Toneva, Mariya, Tom M. Mitchell, and Leila Wehbe. "Combining computational controls with natural text reveals aspects of meaning composition.” Nature Computational Science (2022)..
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Disentangling contributions ot different info sources to
brain predictions

« Stimuli: one chapter of Harry Potter

« Stimulus representation: disentangled
embeddings from pretrained NLP models

e Brain recording & modality: fMRI & MEG, reading

full context

feea)~

Bilateral PTL and ATL
process supra-word
meaning

O] ¥ ¥ K K X ¥ ¥ ¥

Word-IEVEI |nf0rmat|0n 00 01 02 03 04 05 06
important for prediction Proportion sig predicted

ﬂ.” ,vmo 0 .O aYe *. . ) ) ) .
nga)\Dra. | Vel b = &V elhb&— @paidd chputational controls with natural text reveals aspects of meaning composition.” Nature Computational Science (2022)..
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Disentangling contributions ot different info sources to
brain predictions

« Stimuli: story

 Stimulus representation: multi- : X 1150

.  Layer 1 fixed T, = 3,4 ! Timescale 77,
timescale NLP model el e B : escale

Long

i Layer 2 ENEER

; sampled from I E (seconds) =>8.8
« Brain recording & modality: fMRI, | lyorsEEEEEEE learned T, |
IiStening I:.In\{ersg-w
Distribution =
efe o F®
Utilizing an NLP model that 2 |
§ s 400 800 1200

explicitly represents different MTRNN Layer 2 Unit 4
timescale of information
allows the voxel-wise
estimation of the preferred
timescales

Figures provided by Shailee Jain

ible multi-timescale models for predicting fMRI responses to continuous natural speech."” Advances in Neural Information Processing Systems 33 (2020): 13738-
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Disentangling contributions ot different info sources to
brain predictions - e

msm {PD, CM, PU} - {CM, PU} mmm {INC, PD, CM, PU} - {PD, CM, PU}
EEm {CC, PD, CM, PU} - {PD, CM, PU} BB {BERT, Cl, PD, CM, PU} - {CI, PD, CM, PU}

[
=Y

« Stimuli: one chapter of Harry Potter

=
N

=
o

« Stimulus representation: syntactic tree
representations & pretrained NLP model

[o:]

(<))

iy

« Brain recording & modality: fMRI, reading

N

% of ROI voxels with significant R? increases

o

° ° o Syntactic structure-based
N ] (5 e : .
.. — . features explain additional
o) - - Ea L3 variance in language regions
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Words that have been read o e

Regions predicted by syntactic

and semantic are difficult to
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Disentangling contributions ot different info sources to
brain predictions

Extract Average
. . ADV ADV ADJ  activations activations
o Stimuli: story ) ginly, so, true  —— NN
Syenngatfg wildly, right, good ——» [N
« Stimulus representation: pretrained NLP ADV ADV  ADJ equivalences . siies . mmm
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. . ] . . - so, so, alarmed E— ] || X
« Brain recording & modality: fMRI, listening X even, so, hysterical — . (NN
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Svntactic Lexical

Syntax and semantics not
associated with separate

Caucheteux, Charlotte, Alexandre Gramfort, and Jean-Remi King. "Disentangling syntax and semantics in the brain with deep networks." In International Conference on Machine Lear|
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Disentangling contributions ot different info sources to
brain predictions

« Stimuli: story Decomposing NLP

« Stimulus representation: pretrained NLP model embeddings into attention
heads reveals correlations

« Brain recording & modality: fMRI, listening
between syntactic

B M C Mean correspondence across dependencies
layer 7 . embeddings ﬂ\ 0.25 |
768 x 12 layers | [
0.20 -
' 5 |
MLP ; i | |
transformations g 0.15-
64 x 12 heads/layer S | |
® c
A E 0.10 A | |
—_ Zl » e E |
SE 5 0.05 |
S i
o ©
35| 2 A 58 |
E Ju_')' ) 0.00 o Y -
|ayer 6 T T T T T T T T T
"the" "secret" " € £ g8 & 2 § 2 & & ¢
] U S ] = o
= 5 < bl £ S
3 2 - > ®
o <
cade of langu

IJCAI 2023: DL for Brain Encoding and Decoding

193


https://www.biorxiv.org/content/10.1101/2022.06.08.495348v1.abstract
https://www.biorxiv.org/content/10.1101/2022.06.08.495348v1.abstract

Disentangling contributions ot different info sources to

brain predictions

« Stimuli: story

« Stimulus representation:

« Brain recording & modality: fMRI, listening

N

Linguistic
property

This is Los
Angeles. And it's
the ..

Language
model

‘@

fMRI

Naturalistic .
stimulus [/

—— pretrained BERT

Removal of TopConstituents

Removal of TopConstiuents

0.11
s
8 01
g
8009
pretrained NLP model
= 0.08
2
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Residual
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Residual Significant
’ brain . difference
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Original brain alignment
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Oota, S., Manish Gupta, and Mariya Toneva. "Joint processing of linquistic properties in brains and language models" arXiv (2022).

T T T T T T T T
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Layer Depth

Syntactic properties
contribute the most to the
brain alignment trend across
layers of language models
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Complex stimulus representations make it difficult to
infer the effect of a stimulus on multiple brain areas

(«D )
“The problem is when
the capsule moves from
an elliptical orbit to a
parabolic orbit.”

/

o

/

Variance Variance
in Brain in Brain
areal area 2

’ Ny
/ \\\
' ia.ce in the

\ stinffllus

\ [
Variance i presentation

the
stimulus

~ Transformers
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Framework to determine whether a complex stimulus
affects two brain areas in a similar way

1+4
2+3

aounWwMN B~

variance in a
brain zone

variance in a second
brain zone

™ variance in
“' stimulus

variance in stimulus
O representation (e.qg.
ELMa)

I’ \\
I

\\—’,

similar effect

different effect

similar effect of stim. properties captured by ELMo
similar effect of stim. properties missing from ELMo
different effect of stim. properties captured by ELMo
different effect of stim. properties missing from ELMo
different noise

similar noise

can't make inference

e
neralization

TN TN

stimulus properties captured by ELMo

affect both brain zones, but do they
affect both in the same way?

L D)

small

at least some stimulus properties affect brain zones differently

are there stimulus properties, not captured by ELMo, that

affect the brain zones similarly?

¢
1
3 U

TN

stimulus properties affect
brain zones mostly
differently

&
ELMo captures some of
these stim. properties

Inference A

some stimulus properties affect
brain zones differently, and
some similarly

&
ELMo missing stim. properties
that affect zones similarly

Inference B

Toneva, Mariya, Jennifer Williams, Anand Bollu, Christoph Dann, and Leila Wehbe. "Same cause; different effects in the brain." Causal Learning and Reasoning (2022).
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variance in a second
brain zone

variance in stimulus
O representation (e.g.
ELMo)

can't make inference
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at least some stimulus properties affect brain zones similarly

are there stimulus properties, not captured by ELMo, that
affect the brain zones differently?

£

small

stimulus properties affect
brain zones mostly
similarly

&
ELMo captures some of
these stim. properties

Inference C

normalized
zone residuals

‘rge

some stimulus properties affect
brain zones similarly, and
some differently

&
ELMo missing stim. properties
that affect zones differently

Inference D
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Framework reveals differences in processing across
language network areas

Framework reveals

« Stimuli: movie . : :

differences in processing
o Stimulus representation: pretrained NLP model across language network
« Brain recording & modality: fMRI, view & listen areas

Example of each type of effect in movie

Encoding
model perf.
significant in
all language

\ - areas Stimulus properties affect brain zones:
ol O .75 == mostly differently. (Inference A)
Normalized Encoding Model Performance wei similarly and differently. ELMo is missing properties that affect zones similarly. (Inference B)
wel mostly similarly. (Inference C)
== similarly and differently. ELMo is missing properties that affect zones differently. (Inference D)

and Reasoning (2022).

Toneva, Mariya, Jennifer Williams, Anand Bollu, Christoph Dann, and Leila Wehbe. "Same cause; different effects in the brain.” Causal Learning
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Challenges in using DL for cognitive modeling

« Not designed to specifically model brain processing
Training DL models using brain recordings

Task-based modeling

« Can be difficult to interpret due to multiple sources of information

Disentangling contributions of different info sources to brain predictions
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Deep Neural Networks and Brain Alignment:
Brain Encoding and Decoding
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Inria Bordeaux, France; ?llIT Hyderabad, India; 3Microsoft, India; *MPI for Software Systems, Germany
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Agenda

* Introduction to Brain encoding and decoding [30 min]
* Stimulus Representations [1 hour]

e Coffee break [30 min]

* Deep Learning for Brain Decoding [1 hour 30 min]

* Lunch break [1 hour 30 min]

* Deep Learning for Brain Encoding [1 hour 30 min]

* Coffee break [30 min]

* Advanced Methods [1 hour 15 min]

e Summary and Future Trends [15 min]
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Outline

1. Summary
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Summary

« Exciting times: publicly accessible neuroimaging data of various tasks starting to be avaliable

now!
. Opportunltles

Data ahead of theory, so it’s an open field for theoretical and methodological innovation!

- Encoding models can be interpreted as process models constraining brain-computational
theories (Kriegeskorte and Douglas, 2019).

- Decoding models serve as a test for the presence of information in neural responses
(Karamolegkou et al., 2023)

- Decoding is relevant for cognitive neuroscientists interested in how semantic information is
represented in the brain.

- Computational linguists are interested in the cognitive plausibility of distributional models.
(Minnema & Herbelot, ACL 2019)

- DLis helpful in uncovering patterns in brain responses and may lead to theories of information
organization in the brain.

-  Challenges:
- Hypothesis-driven data collection might be more helpful
« Individual variability is the norm in neuroimaging data!
- Neuroimaging data is more complex, noisy as compared to classical datasets used by DL

researchers
202
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Summary

This Tutorial:

Stimulus representation schemes
Vision: CNN-based
Language: Transformer-based

Datasets available (Reading/Listening/Viewing tasks in EEG, MEG, fMRI)
Decoding

Word-level Universal Brain Decoder; Continuous Lang Decoding; Multi-view and
Cross-view Decoding

Encoding
Classical findings; More recent DL-based models
Advance methods

Tuning/Training DL models using brain recordings
Task-based modeling
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Outline

2. Future trends: DNNs & The Brain
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DNNs & The Brain: Multi-modal, Multi-task

* Brain response to a stimulus is multi-modal, multi-task related
* Cross-view and multi-view decoding (Oota et al 2022a)
* Visio-linguistic encoding (fusion of vision and language information) (Oota et al 2022b)
* Task-based representations give better brain alignment (Neural Taskonomy: Oota et al 2022c)
 Multimodal foundation model (Fei et al 2022)

d b BriVL (ours) most other models
occipital lobe perception weak semantic correlation strong semantic correlation
i j

@ vision AM‘" memory !
-,) unknown - '
* /mechanism
language @ Ant cognitive reasoning =
abilities ' —
temporal lobe i
human brain Happy birthday! Make a wish.  This is a fruit cake with a candle.

f‘

image-text limited
retrieval ﬁ huge manually-
k « » webdata annotated
text-to-image s v

image
e [101...1] . data
contrastive » generation
) text 2 : learning . visual question - modeling by ‘ . mode!i?g by -
= SR [101...1] adaptation answering image-text matching image-to-text “translation
n
BriVL (foundation model) closer to AGI ?

Fei, Lu, Gao et al (2022). Towards artificial general intelligence via a multimodal foundation model. Nature Communications 13:3094
doi.org/10.1038/s41467-022-30761-2



DNNs & Brain Damage

* DL models of encoding and decoding have not yet been put through the brain-
damage experiments. Ex. Semantic Dementia

Bfanilng RO Animal habitat task.

Stimulus Response

, . . In water
E I The patient is asked: RO
& Where would you find
‘& \_Inthehouse. It'sa [ [s? Ccow On afarm
. I Do DL Models exhibit
Outside the house ' 7 : On ponds. |see SUCh degradatlon
There are lots of | ’ DUGK them on the river th d amage tO
th They fl when | go walking. WI g
- em. They fly about. . t ?
UNITS:
| ’s got a In the woods, in
lbnu\:llwayt:;.illtso igt'stgood SRHIRREL | g cc?untry. They
at swimming. are wild.
In the house. It's Rt Ant Temporal Lobe MONKEY | I trees, in Africa.
SORIERRHT SN Damage (Patient 8)

Snowden, Harris, Thompson, Kobylecki, Jones, Richardson, Neary (2018). Semantic dementia and the left and right temporal lobes, Cortex, 107(188-203).
https://doi.org/10.1016/j.cortex.2017.08.024.



Multilinguality

How do multilingual participants represent information?
Different language families and typologies (verb-framed vs satellite
Multiple scripts
How do brain activations align to modern LLMs that perform language
translation among multiple languages apparently seamlessly?
Bi/Multilingual Advantage and what does it mean for DL models?
studies have shown superior executive function (inhibitory control), memory in
multilingual participants
Potential representational differences in simultaneous and sequential
multilinguals
Link between Language and Cognition

What can DL models contribute to Bi/Multilingual Literature?
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A big thank you!

Tutorial, Code and Material:
Material from 1JCAI 2023 Tutorial would be uploaded soon!

(Past): Deep Learning for Brain Encoding and Decoding, Cogsci-2022
https://tinyurl.com/DL4Brain

(Past): Language and the Brain: Deep Learning for Brain Encoding and Decoding, [JCNN 2023
https://tinyurl.com/DLBrainlJCNN2023
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Thanks!

* Questions
e subba-reddy.oota@inria.fr
* gmanish@microsoft.com
* raju.bapi@iiit.ac.in
* mtoneva@mpi-sws.org

e Connect with us:

* https://www.linkedin.com/in/subba-reddy-oota-11a91254/

e http://aka.ms/manishgupta, https://sites.google.com/view/manishg/
* https://sites.google.com/view/bccl-iiith/home

e http://www.mtoneva.com
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