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What is fMRI?
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PURDUE

A listening task in the scanner
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Brain Encoding vs Decoding
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Yizhen Zhang, Kuan Han, Robert Worth & Zhongming Liu. "Connecting concepts in the brain by mapping cortical representations of semantic relations" Nature (2020).



https://www.nature.com/articles/s41467-020-15804-w

Data-driven encoding models evaluate the relationsnips
between brains and deep learning models

Multimodal Deep learning A priori locations in Data-driven
naturalistic system DL system and brain encoding model

stimulus

how are
they
related?



https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf

Brain Encoding?
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Speech representation learning methods
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Abdelrahman Mohamed, Hung-yi Lee. Self-Supervised Representation Learning for Speech Processing. Tutorial, ICASSP 2022.



https://docs.google.com/presentation/d/1oN0W-6e1tBFpmR_NXVwQRAkrP4d3h32G-T-W6geCXoM/edit?pli=1#slide=id.p

Limitations of Earlier Studies

* Speech stimuli have mostly been represented using encodings of text
transcription.

* But, text transcription-based methods ignore the raw audio-sensory information
completely.

* The best models of the auditory system are still either hand-engineered or
supervised (i.e. used basic features like phoneme rate, the sum of squared FFT
coefficients)



Self-Supervised speech models accurately predict brain
activity

Toward a realistic model of speech processing in the
brain with self-supnervised learning
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Self-supervised models of audio effectively explain
human cortical responses to speech

Many but not all deep neural network audio models capture brain
responses and exhibit hierarchical region correspondence

Greta Tuckute*'2, Jenelle Feather*'2, Dana Boebinger'%34, Josh H. McDermott'23
*co-first authors

'Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research MIT,
Cambridge, MA, USA

“Center for Brains, Minds, and Machines, MIT, Cambridge, MA, USA

*Program in Speech and Hearing Biosciences and Technology, Harvard, Cambridge, MA, USA
“University of Rochester Medical Center, Rochester, NY, USA

Abstract

Deep neural networks are commonly used as models of the visual system, but are less explored
in audition. Prior work provided examples of audio-trained neural networks that produced good
predictions of auditory cortical fMRI responses and exhibited correspondence between model
stages and brain regions, but left it unclear whether these results generalize to other neural
network models. We evaluated brain-model correspondence for publicly available audio neural

Vaidya, Aditya R., Shailee Jain, and Alexander G. Huth. "Self-supervised models of audio effectively explain human cortical responses to speech." ICML (2022).

Millet, Juliette, Charlotte Caucheteux, Pierre Orhan, Yves Boubenec, Alexandre Gramfort, Ewan Dunbar, Christophe Pallier, and Jean-Remi King. "Toward a realistic model of speech processing in the brain with self-supervised learning." arXiv preprint arXiv:2206.01685 (2022).
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Self-Supervised Speech Models
(Wav2Vec2.0, HUBERT, APC,...)

8

Greta Tuckute, Jenelle Feather, Dana Boebinger, and Josh H. McDermott. "Many but not all deep neural network audio models capture brain".



https://arxiv.org/pdf/2205.14252.pdf
https://arxiv.org/abs/2206.01685
https://www.biorxiv.org/content/10.1101/2022.09.06.506680v2.full.pdf

Key Contributions

* We perform an extensive study for brain encoding using DL-based speech models.

* We evaluate 30 speech models grouped into four types against a popular BOLD fMRI
dataset (Moth-Radio-Hour).
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Abdelrahman Mohamed, Hung-yi Lee. Self-Supervised Representation Learning for Speech Processing. Tutorial, ICASSP 2022
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https://docs.google.com/presentation/d/1oN0W-6e1tBFpmR_NXVwQRAkrP4d3h32G-T-W6geCXoM/edit?pli=1#slide=id.p
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Listening data target: human brain recordings

* We use Moth-Radio-Hour
story listening dataset:

. BOLD fMRI Data (Raw and Preprocessed)

* 6 subjects,

Hand-Corrected Surfaces Stimuli: 27 Stories from The Moth

for Each Participant

I reached over and slowly undid my seatbelt ...

e 27-stories E 9
9737 TRs (TR: repetition & E

time) 2 ? e 3)
* Each TR s 2.0045 sec. . % s aEs. AGE bR

Time (TRs)

11

Amanda LeBel, Lauren Wagner, Shailee Jain, Aneesh Adhikari-Desai, Bhavin Gupta, Allyson Morgenthal, Jerry Tang, Lixiang Xu, Alexander G. Huth "A natural language fMRI dataset for voxelwise encoding models" Nature (2022).



https://www.biorxiv.org/content/10.1101/2022.09.22.509104v1.full

Encoding
Performance

of Speech
Models

Category Model AC Broca | Whole Brain
Traditional | Spectrogram 0.0545 | 0.0511 0.0495
non-DL Filter bank 0.0477 | 0.0450 0.0498
& non-55 | Mel 0.0489 | 0.0515 0.0511
DL MEPCC 0.0495 | 0.0520 0.0517
Methods VGGish 0.1612 | 0.0785 0.0605
PASE+ 0.1272 | 0.0719 0.0601
DeCoAR 0.2332 | 0.1017 0.0695
DeCoAR2.0 0.2293 | 0.1142 0.0722
Generative NPC 0.2123 | 0.0995 0.0678
Self. TERF%: _ 0.2332 | 0.1052 0.0718
Supervised Mockingjay 0.1 S 12 | 0.0946 0.0624
Methods APC 0.2382 | 0.0991 0.0710
VQ-APC 0.2085 | 0.0891 0.0658
Audio ALBERT 0.2184 | 0.0992 0.0688
MALE-AST 0.2355 | 0.1132 0.0729
S§8-AST 0.2193 | 0.1023 0.0673
Modified CPC 0.2128 | 0.1019 0.0671
Wav2Vec 0.2209 | 0.1044 0.0719
Contrastive VQ-Wav2Vec2.0 0.2307 | 0.1167 0.0754
Self- Wav2Vec2.0) 0.2662 | 0.1 ?% 1 0.0861
Supervised Wav2Vec2.0-Large | 0.2676 | 0.1750 0.0882
Methods '\E'tavﬁ‘u’ccﬁ.ﬂ-ﬂ 0.2655 | 0.1740 (0.0860
Discrete BERT 0.2277 | 0.1065 0.0715
BYOL-A 0.1302 | 0.0784 0.0566
Unispeech 0.2378 | 0.1356 0.0738
Predictive WavLM 0.2356 | 0.1116 0.0727
Self. HuBERT 0.2298 | 0.1 ﬂ%ﬂ 0.0730
Supervised Dfita_ﬁ‘l.*'cc 0.2683 | 0.1756 0.0886
Methods D]Htl]”'l.lBERT 0.2323 | 0.1101 0.0738
LightHuBERT 0.2328 | 0.1102 0.0737




Model Encoding Performance (Data2Vec)




Model Encoding Performance




Layer Selectivity
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How do we assess models” performance?
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Model Size vs. PCC
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Conclusion & Future Works

We comprehensively evaluated different categories of encoding models to evaluate their efficacy in learning
brain-like representations —

* traditional DL and non-DL,

* generative,

* contrastive, and

» predictive self-supervised (SS) models- to evaluate their efficacy in learning brain-

Contrastive and predictive models encode the information better than the generative and the traditional
low-level acous-tic baselines, and VGGish models.

We plan to explore the effect of finetuning these speech models (SUPERB benchmark) rather than using
them in probe mode only.

Also, we plan to extend the experiments to multi-modal models that encode audio and text together
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