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What is fMRI?

At three o’clock precisely I was at Baker Street, but Holmes had
not yet returned. The landlady informed me that he had left the
house shortly after eight o’clock ...

It was close upon four before the door opened, and a drunken-

looking groom, ill-kempt and side-whiskered, with an inflamed -
face and disreputable clothes, walked into the room. Accustomed ' o PURDUE
as | was to my friend’s amazing powers in the use of disguises, 1 :
had to look three times before I was certain that it was indeed he.

A language task in the scanner

“Well, really!™ he cried, and then he choked; and laughed again
until he was obliged to lie back, limp and helpless, in the chair.

“What is 1t?”

“It’s quite too funny. I am sure you could never guess how |
employed my morning.”

“I can’t imagine. | suppose that you have been watching the
habits, and perhaps the house, of Miss Irene Adler.”

“Quite so; but the sequel was rather unusual. I will tell you, ... |

soon found Briony Lodge. It is a bijou villa, with a garden at the
back, but built out in front right up to the road, ...

Text Corpus

fMRI Brain
Activity

https://www.biopac.com/events/fmri-psych/



Brain Encoding vs Decoding

Stimulus
Representation

At three o’clock precisely I was at Baker Street, but Holmes had
not yet returned. The landlady informed me that he had left the
house shortly after eight o’clock ...

Encoding fMRI

It was close upon four before the door opened, and a drunken-
looking groom, ill-kempt and side-whiskered, with an inflamed
face and disreputable clothes, walked into the room. Accustomed
as | was to my friend’s amazing powers in the use of disguises, |
had to look three times before I was certain that it was indeed he.

“Well, really!™ he cried, and then he choked; and laughed again
until he was obliged to lie back, limp and helpless, in the chair.

“What is it?”

“It’s quite too funny. I am sure you could never guess how |
employed my morning.”

“I can’t imagine. | suppose that you have been watching the - .

habits, and perhaps the house, of Miss Irene Adler.”

“Quite so; but the sequel was rather unusual. I will tell you, ... |
soon found Briony Lodge. It is a bijou villa, with a garden at the
back, but built out in front right up to the road, ...

Stimulus

. Decoding | fMRI
Representation

Haiguang Wen et al, 2017



https://purr.purdue.edu/members/5068

What is Brain Encoding?
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What is Brain Encoding?

Stimulus Stimulus
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What is Brain Encoding?

Pearson Correlation (R) = Corr(Y, W(X))
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Most popular language models are Transformers

Output
Probabilities
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Vaswani et al. 2017
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Pretrained language models accurately predict brain
activity

The neural architecture of language: Integrative
modeling converges on predictive processing
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Can task-specific language models better predict
fMRI brain activity?

e A

BERT
g =

L

\_ sentence(s) )

pre-trained BERT

Devlin et al. 2019



Can task-specific language models better predict
fMRI brain activity?

Tasks
Paraphrase
Summrisation
Question Answering
Sentiment Analysis

Word Sense Disambiguation
Natural Language Inference
Semantic Role Labeling
ence Resolution

BERT
g =

LJ

\_ sentence(s) )

pre-trained BERT

BERT
P

sentlﬁlce(s) )
fine-tuned BERT Syntactic

Pretrained BERT

Devlin et al. 2019, Bowon et al. 2020



ask-specific Models (10) + Pretrained BER

Common underlying model
/ Bert-base (768 dimension)

Task | HuggingFace Model Name | Dataset URL

NLI bert-base-nli-mean-tokens Stanford Natural Language Inference (SNLI), MultiNLI https://huggingface.co/
sentence-transformers/
bert-base—-nli-mean-tokens

PD bert-base-cased-finetuned-mrpc Microsoft Research Paraphrase Corpus (MRPC) https://huggingface.co/
bert-base-cased-finetuned-mrpc

SS bert-base-chunl CoNLL-2003 https://huggingface.co/vblagoje/
bert-english-uncased-finetuned-chun]

Sum bart-base-samsum SAMSum https://huggingface.co/lidiya/
bart-base-samsum

WSD bert-base-baseline English all-words https://github.com/BPFYap/BERT-WSD

CR bert_coreference_base OntoNotes and GAP https://github.com/mandarjoshi90/
coref

NER bert-base-NER CoNLL-2003 https://huggingface.co/dslim/
bert-base-NER

QA bert-base-qa SQUAD https://huggingface.co/docs/
Cransformers/model doc/bert#
bertforquesticonanswering

SA bert-base-sst Stanford Sentiment Treebank (SST) https://huggingface.co/barissayil/
bert-sentiment-analysis-sst

SRL bert-base-srl English PropBank SRL https://s3—us—west-2.

amazonaws.com/allennlp/models/
bert-base-srl1-2020.02.10.tar.gz




Can task-specific language models have similar
predictive performance in reading and listening?
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Can task-specific language models have similar
predictive performance in reading and listening?
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Reading data target: human brain recordings

 We use Periera dataset
* reading sentences
* 5subjects
* 627 sentences
(experiment 2 + 3)

Example: "A clarinet is a woodwind
musical instrument"

Periera et al. 2018 fMRI

Experiment 2:
Musical instruments (clarinet)

A clarinet is a woodwind musical instrument.
It is a long black tube with a flare at the bottom.

The player chooses notes by pressing keys and holes.
The clarinet is used both in jazz and classical music.

Musical instruments (accordion)

An accordion is a portable musical instrument
with two keyboards. One keyboard is used for
individual notes, the other for chords. Accordions
produce sound with bellow that blow air through
reeds. An accordionist plays both keyboards
while opening and closing the bellows.

Musical instruments (piano)

The piano is a popular musical instrument

played by means of a keyboard. Pressing a
piano key causes a felt-tipped hammer to hit a
vibrating steel string. The piano has an enormous
note range, and pedals to change the sound
quality. The piano repertoire is large, and

famous pianists can give solo concerts.

Experiment 3:
Skiing (passage 1)

| hesitantly skied down the steep trail
that my buddies convinced me to try.

| made a bad turn, and | found myself
tumbling down. | finally came to a stop
at a flat part of the slope. My skis were
nowhere to be found, and my poles
were lodged in a snow drift up the hill.

Skiing (passage 2)

A major strength of professional skiers
is how they use ski poles. Proper use of
ski poles improves their balance and
adds flair to their skiing. It minimizes
the need for upper body movements

to regain lost balance while skiling.

Skiing (passage 3)

New ski designs and stiffer boots let
skiers turn more quickly. But faster and
tighter tumns increase the twisting force
on the legs. This has led to more injuries,

particularly to ligaments in the skier's knee.

Gambling (passage 1)
When | decided to start playing cards, things
went from bad to worse. Gambling was
something | had to do, and | had already
spent close to $10,000 doing it. My friends
were sick of watching me gamble my savings
away. The hardest part was the horror of leavin
a casino after losing money | did not have.

Gambling (passage 2)
Good data on the social and economic effects
of legalized gambling are hard to come by.
Some studies indicate that having a casino
nearby makes gambling problems more likely.
Gambling may also be associated with persona
bankruptcies and marriage problems.

Gambling (passage 3)

Over the past generation, there has been

a dramatic expansion of legalized gambling.
Most states have instituted lotteries, and
many have casinos as well. Gambling has
become a very big but controversial business.

14



Listening data target: human brain recordings
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Evaluation Metrics: 2V2 and Pearson
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Encoding Performance (Reading)
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Which language sub regions have higher predicitivity?
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Encoding Performance (Listening)
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Task Similarity - Reading

sSS

SRL
NLI
WSD
NER
SA
QA

Sum (

PD

Correlation between brain activity CR with NER, and CR
predicted with Summarization task with SS have high
and Paraphrase detection task similarity match.




Task Similarity - Listening

55 L 0.361 0.31

SRL 0.41 0.457

MLI

NER . 0.482 0.482 0.41
e L 0.493 0.482 0.459

QA .30 0.493 0.482 0.425

sum( . 0.403 0.459 : 0.471

PD d .35 0.417 .35 0.467

Correlation between brain activity
predicted with Summarization task
and Paraphrase detection task

WsD ! 0.425 0.459 0.41

0.307 i 1

0.459

NLI with CR, and NLI
with SA have high
similarity match.




Reading Task: Dendrogram
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Listening Task: Dendrogram
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Brain Maps (Reading)
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Bram I\/Iaps (Readlng)
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Brain Maps (Listening)
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Limitations & Future Works

* We leveraged models finetuned using datasets of different sizes
across tasks.

* While a fair comparison of dataset sizes across tasks is impossible,
 we understand that this could have resulted in some bias in our results.

* The differences in task-specific model performances across reading
and listening are mainly due to the learned stimulus representations,

e other factors such as experimental conditions, the text domain of the stimuli
or number of voxels also effect the model performance.
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