LaBRI o oRoERux

Neuro-Computational Models of Language Comprehension:
characterizing similarities and differences between language
processing in brains and language models

Subba Reddy Ootat
Inria Bordeaux, France

Artificial Biological Mnemosyne (IMN-Team7)
o

> (v Al9s




Outline

Introduction to neural basis of language comprehesion

Deep neural networks and brain alignment: brain encoding and decoding

Research questions

Implications to Neuro-Al



Mechanistic understanding of language processing in the brain:
four big questions
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Typical studies of language processing with controlled experiments

* How the human brain computes and encodes syntactic

structures?
* Syntax: how do words structurally combine to form Controlled experiments
sentences and meaning? /\
Structured complex sentence Word lists
| believe that you should thing very tree where of
accept the proposal of watching copy tensed
your new associate they states heart plus
BOLD response BOLD response
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Language organization in the brain

Controlled experiments are task-based and not ecological

Matchin & Hickok et al. 2022



Increasingly available open source ecological stimuli datasets

Dataset Modality | Subj 1-TR #TRs
Full-Moth-Radio-Hour Listening 8 2.0045s | 9932
Subset-Moth-Radio-Hour | Reading 6 2.0045s | 4028
Subset-Moth-Radio-Hour | Listening 6 2.0045s 4028
Narratives (21*-Year) Listening 18 1.5s 2250
Harry-Potter Reading 8 28 1211

With advancement of ecological stimuli datasets and open source language models, recent
studies looked at interesting open questions?

@x/ g>?
Is the “how” of the NLP system &' 1 J How is information aggregated by the

the same as “how” of the brain? "'H)h’ brain during language comprehension?

Deniz et al. 2019 Lebel et al. 2022 Nastase et al. 2021 Li et al. 2022 Zhang et al. 2021 6



Language models are trained to predict missing words

jumps
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{ Language model J

T

The quick  brown fox [MASK]




Transformer: two popular language models (BERT & GPT-2)
S [ Output \

Probabilities

Harry never [thought] he would Harry never thought he ???
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Emerging abilities of language models

Writing

Humanities Roleplay Advantages .

* Deals with longer context lengths (e.g. 4096
sequence length in longformer model)
STEM g s Reasoning  Models are pretrained on different domain
specific datasets, and have reasoning
capabilities

Extraction Math

Coding

https://huggingface.co/HuggingFaceH4/zephyr-7b-beta



Extracting representation of a word from LMs

 What layer should be considered? % —

* How much context / what context ?

* Attention heads, feed forward layers,
Weight activations? ENCODER

ENCODER

ENCODER

Devlin et al. 2018

RT
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Brain Encoding and Decoding

How is the stimulus represented in the brain?

rain encodin

Brain fMRI pattern

Visual image

rain dec@

Reconstruct the stimulus, given the brain response?
lvanova et al. 2022
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Deep neural networks and brain alignment: brain encoding and decoding

Multimodal Deep learning A priori locations in Data-driven
ecological system DL system and brain encoding model

stimulus

how are
a they
related?
Wehbe et al. 2014, Toneva and Wehbe 2019, Jain et al. 2020,
Jain and Huth 2018, Caucheteux et al. 2020, Schrimpf et al. 2021,

Gauthier and Levy 2019 Toneva et al. 2020 Goldstein et al. 2022
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General encoding pipeline to evaluate brain-LM alignment

a priori locations in

language model (LM) NLP system and brain

000 - .
W"_W 000 Learn function f
“There are scientists who
e > There are  scientists f( . . . ) ~
alignment
~5000 words . ' X alig

f( )= ‘

Test how well f predicts
unseen brain recordings

Brain alignment of a LM = how similar its representations are to a human brain’s

Wehbe et al. 2014, Toneva and Wehbe 2019, Jain et al. 2020,
Jain and Huth 2018, Caucheteux et al. 2020, Schrimpf et al. 2021,

Gauthier and Levy 2019 Toneva et al. 2020 Goldstein et al. 2022
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Encoding schema
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Encoding: training independent models

e Independent model per participant

f(‘")“‘ f(ou)z‘

e Independent model per voxel / sensor-timepoint

P1,vl P1, v2

f(ooc)z‘ f(QQQ)z‘

PN

P1,vm
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Research questions

v

?

Language models predict the next word
from nearby words, but semantics are
crucial for language comprehension.

2
. )’
ues

Is the how brain utilizes context
through time to process words
during narrative story listening?

16



Objectives

What happens during narrative story listening?
Whether a new word representation is combined with previous context?

We use MEG activity to trace
How is context represented in the brain?
How does previous context help for new word meaning?

17



With MEG we can analyze sub-word time course

MEG recording data at very fast temporal resolution
So, we can look at sub-word process
fMRI recording data at very high-spatial resolution

0

When

Words =
Nonwords

A
Y

400 800
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Text: Word Contexts

[Context word] [Context word] |Current word

How to extract contextual word representions?

How does previous context help for new word meaning?

Isolating current word meaning is a type of intervention

1-word context

[ vehicle ]

Selected embedding

5-word context  [drove] [my] [high] [speed][vehicle | | vehicle][down] [the] [road] [today]

Lag-1 [drove] [my] [high]|[speed]|vehicle  vehicle |[[down]|[the] [road] [today]
Res-1 [drove] [my] [high] [speed] wehiele  wehicle [down] [the] [road] [today]
N\ N\ J
Y Y
Past context Future context

19



Listening data target: human brain MEG recordings

* We use MEG-MASC story listening
dataset:
e 27 subjects (8-subjects used),
e 4-stories (11,002 words)

e Alignment performed between MEG
signal and word representations
around every word onset

e 800ms signal window around
word onset: 200ms before
(baseline correction), 600ms
after

Laura Gwilliams, Graham Flick, Alec Marantz, Liina Pylkkanen, David Poeppel, Jean-Remi King. "MEG-MASC: a high-quality magneto-encephalography dataset for evaluating natura

litude A

p

Am

MEG-MASC Dataset
MEG recordings

27 participants

2 hours of story listening

2 repeated sessions
structural MRIs
audio, phonetic and word annotations

standardised BIDS structure

warl hrz l o pSter 1 sgwi1 [Sttadar 1 damad Vhr : 2: t s

speech processing" Arxiv (2022).
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https://arxiv.org/ftp/arxiv/papers/2208/2208.11488.pdf

Encoding Performance of Syntactic and Semantic Methods

basic syntactic (CM, POS and DEP), and
A L o= A ~ & non-contextual

0- | o A semantic features (GloVe) are, on

average, not correlated with

the considered window of MEG activity

x10~* * Simple syntactic features (Complexity
D0 BERTG  * tttteesseeesssssesssssiiisssniisesssnnieesssniiesssnne Metric, Parts of Speech, Dependency
— e tags) |
4. — CM : * Non-contextual word representations
POS | (GloVe)
—— DEP i * BERT contextual representations
N 3 J :
c |
= |
© |
3;- e
1 - i Due to limited context information,
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How is context represented in the brain

effect of direction

- 0000000 OO Re R0 Rt R e ROttt et et eteeeRed
% 900NN RN SRR ReN RN detteRtendRtdRteteRhaed

000000000000000000000000000000000000000000000000000000

- - 20 (past)
- 5 (past)
— 5 (future)

- = 20 (future)

Long past contexts enable better

encoding than future or short-scale
present contexts
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Contextual BERT Embeddings:

effect of length

x10 —4

8 - ettetdddetedddtedddtdddeteedededddtdeddtdededddddtdoRRRdd
N0 RN RORORARRORNON RN AR RROR RN RO RNt ORROOeeRaned

Mean R 2

Context length plays a crucial role in
predicting MEG (300 to 425 ms).
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Contextual BERT Em

%10

Oota, Subba Reddy et al. 2023. "MEG Encoding using Word Context Semantics in

beddings (Residuals vs. Lag)

- BERT-5 res.

- BERT-5 lag =—— BERT5

I | | I I I I

0.2

0.2 0.6

Wt + 3

0.6

Wt +1 Wt +2

Past word context is
crucial in obtaining
significant results.

MEG is sensitive to mostly the
current and previous words

Listening Stories."
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https://proceedings.neurips.cc/paper/2021/file/51a472c08e21aef54ed749806e3e6490-Paper.pdf

Partial Conclusions
Similar to language models, human brain process words in time through close past words

By varying context lengths, we showed that semantics are crucial for brain language
comprehension

Coherent with previous studies:
* Guwilliams et al. 2022 showed that the several past phonemes information (with position and
order in sequence) are kept in memory

25



Research questions

% K)
W

Do language models that process longer sequences align better
with human participants during long narratives story listening?

26




Can current language models deal with long-term dependencies?

Paragraphs

“f you were to joumey to the North of England, you
would come to a valley that is sumounded by moors
as high as mountains. It is in this valley where you.. .

Stimulus  »

Blank2014

Iy
r
-
S 8
£ Lack of long-range
5 -6 semantic context?
N
’_E 4
= 2
=

.0

Sialsh BERT HLM = AIBERT GPT

Vaswani et al. 2017, Schrimpf et al. 2021

* Transformer language models
(BERT & GPT-2) are unable to
handle the long-term
dependencies

* sequence length is fixed to
512 words

* LSTMs still lacks investigation of
the long-term memory cognitive
plausibility and its link to fMRI
data
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What kind of language models can represent long-term

dependencies?

/

\_

longer stories ?

\

could they also predict higher cognition while subjects are engaged in

!
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The data target: human brain recordings
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Text: Feature Representaions

-
Static word

embeddings
\.

\

S

GloVe

r

\L

Recurrent
models

\

Long Short-Term

Memory Networks

(LSTM)

* Cell state (long
memory)

* Hidden state
(short memory)

Semantic
embeddings

ELMo
Longformer

30



Encoding Performance of language models

t | B RandLSTM (hidden state) W ell state)
LSTM (hidden stat LSTM (cell state) I ELMo Longformer

Average of Subjects
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Pearson Correlation

* Longformer model representations have high Pearson correlation
across language rois and sensory regions (early auditory cortex)

®* LSTM cell state representations display better brain alignment than

hidden state representations
31



Layer-wise encoding performance: Longformer
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Effect of context length on longer-context language models

Longformer
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brain alignment improves only when we provide longer input contexts (5-100)
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Partial Conclusions

Use human brain recordings to evaluate how well representations from language models (static vs.
recurrent vs. pretrained) can predict representations of the human brain during language
comprehension

Richer representaions learned from language models, designed to integrate longer contexts, have
Improved alignment with human brain activity

Pretrained language models significantly predict brain language regions that are thought to underlie
language comprehension

34



Research questions

peak

BOLD Response
#

initial dip post stimulus undershoot

1% T T T T T T
[1] 5 10 15 20 5

fm,ums Time (sec)
fMRI measures BOLD suffers
from delay due to Hemodynamic
Response Function

How: ???

Do diverse language regions
within the brain is impacted by
delays?
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Hemodynamic Response Function (HRF) delay.

BOLD response Current brain encoding studies focused on language processing at fixed HRF delay

Stimuli Authors Type|Lang. |[Delays

(Jain et al., 2020) fMRI|English| 8secs (4 TRs)

| (Jain and Huth, 2018) fMRI|English| 8secs (4 TRs)

! (Caucheteux et al., 2021) [fMRI|English|7.5secs (5 TRs)
(Reddy and Wehbe, 2021)|fMRI|English| 8secs (4 TRs)
(Merlin and Toneva, 2022) [fMRI|English| 8secs (4 TRs)
(Aw and Toneva, 2022) |fMRI|English| 8secs (4TRs)

Text

: (Antonello et al., 2021)  [fMRI|English|8secs (4 TRs)
/\ (Oota et al., 2022b) fMRI|English[[9secs (6 TRs)
(Oota et al., 2023a) fMRI|English|{12secs (6 TRs)
A
—m

L 1 1 L L 1 1 Il L 1 1 1 L ]

Time (in sec)
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What information is processed across language regions at fixed
HRF delay?

« How language processing within the brain is impacted by delays in the Hemodynamic
Response Function (HRF)?
« Can we distinguish syntax and semantics by varying delays?

37



Text: Feature Representations

4 N 4 N ~ N
Basic word- Basic speech Syntactic tree Semantic
level syntax features parsers embeddings
\. y, \. y, \. y,
Constituent Text models:
Complete (CC) BERT, GPT-2
Part-of-Speech Tags . i
(POS) & Phonological N LLaMa-2
D d T onstituen
(DeEloF?)n oneyaes Incomplete (Cl) Speech models:

Wav2Vec?2.0
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Syntactic Parising

« Syntax: how do words structurally combine to form sentences and meaning?
 In natural language processing, there are two popular syntactic parsing methods

'ROOT |

punct

/l\ LI I fm 0
/ case
: 1R () gl R V[Y]
N

( R K \v l ?E E; sat Oﬂt?g
LT
¢ +/ \

Constituency parsing Dependency parsing

mat .
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Listening data target: human brain recordings

* We use Tunneling story:
« 22 subjects,

"‘ryﬂ b
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A
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Example: " began my 3 semantic features "
E ¢
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illustrious carrier in
. . & ___ spatial smoothing to harmonize
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™ realignment and spatial
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0
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HE. )
=i T : . ; ; T : . , seconds 249b1 raw NIfTl data, metadata, OpenNEURO
0 50 100 150 200 250 300 350 400 450 and stimuli in BIDS format
| 1 Ll 1 1 1 1 TRS
0 50 100 150 200 250 300
Language
Network

[Fedorenko et al. 2010, 2014]
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Normalized Predictivity

Schrimprf et al. 2021

estimated ceiling

Pereira2018-encoding

,
-

L I
-

A

-
-
.
-" .,

B e ) R

asymptote 0.31 at #~7

-

- L]
3 v ~ .
" I —U--‘L—f‘——.:"_'___
..-—Ji' = . s &
1

4 6
# subjects

8

10

“how close are we” — ceiling

compute how well a pool of subjects predicts a held-out subject

predictivity,ormalized =

Predictivity

predictivity

ceiling

=

N R O ®

Normalized Predictivity

o




How language processing within the brain is impacted by delays in the
Hemodynamic Response Function (HRF)?

—J-- BERT Contextl —$— Wav2vec2.0 —— CC JModels / Delays—| D1 D2 D3 D4 [ D5 | D6 D7 DS
-k BERT Context5 —4— POS Tag Cl BERT Contextl 15.58% 28.23%* 40.06* 45.46%|47.86(47.57 46.36 45.58
=k BERT Context20  —¢— DEP Tag Phonological BERT Context5 17.14% 28.75*% 41.41* 47.44 |149.88| 49.1 50.85 50.69
BERT Context20 |[22.83% 34.05* 44.67* 46.0% |53.62| 53.0 53.81 53.42
0.6- Wav2vec2.0 25.2% 34.22% 41.45% 44.57*%|47.12|45.94 46.24 46.14
I I I L l POS Tag 5.82% 11.2* 16.35 18.55(17.77|19.14 18.5 16.44
A~ -—+—-" S DEP Tag 17.31% 31.8% 42.98*% 50.53 |50.02]50.35 46.76 45.37*
2\0.5- 3---—_1><““‘ CC 15.24% 30.45* 43.66* 47.91 [48.08(47.55 45.88 44.18*
2 T cr 16.08* 29.57* 41.81* 48.18 |48.30| 47.8 46.66 46.19
kS, 4.4 Basic Speech 17.86% 21.49%* 24 98* 27.6% |29.53|29.62 28.93 29.34
© 0.4-
o
o
2d.3-  Syntactic embeddings, including CC and Cl,
% show higher brain activity in the early delays,
g 2- particularly D4, with a decrease in activity at later
3 ‘ delays (D6-D8).

0.1 * BERT wth Context 20 performs the best, implying
that brain predictivity improves with increasing
context length.

0.0

15 3.0 45 6.0 7.5 9.0 10.5 12.0
Delay (secs)
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Can we distinguish syntax and semantics by varying delays?

—J-+ BERT Contextl —4— Wav2vec2.0 —— CC

-} BERT Context5 —4— POS Tag Cl
=4 BERT Context20 —4— DEP Tag Phonological
44
0.6-
503 el ] Sos « Higher normalized
5 04 <=3 S04 predictivity is observed
%“3 | 503 for syntactic embeddings
202 | 202 at D4 for 44 and 45
m T/"/'J'HT/Tﬁﬁ £ o regions
= =
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IFla_
| '
2°° | -  |FJaregion process
he s syntax in early delays and
. " semantics in later delays
2™ . * IFSp region process
0.2 ¥ — . o
E ¥ | 2] semantics in later delays
©0.1- .
o1 ] - (D5-D8)
0.0 0075 30 45 60 75 9.0 105 12.0

15 30 45 60 7.5 90 105 12.0
Delay (secs) Delay (secs)




Partial Conclusions

In ecological setting, our findings are consistent with Hierarchy of language processing (Matchin &
Hickok)

Different optimal HRF delays for processing of syntax (6 secs) and semantics (> 7.5 secs) at early and
later delays, respectively

Detailed region and sub-region analysis reveal that longer context may play a significant role in higher
HRF delays
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Research questions

@@ [ O

The red ball is on the right The red cup is on the right
b ) Ee)
“, O O
=
The orange bowl is on the middle The red car is on the left

How does the model's ability to
learn semantic concepts

through cross-situational learning
In Noisy supervision?

Grounded language acquisition:
how infants can learn language by
observing their environments.

45



How language models can perform grounded language acquisition?

* We employ CSL task using two sequence-based language models:
* Echo State Networks (i.e. Reservoir Computing)
* Long Short-Term Memory Networks (LSTM)

Input Gate Output Gate
X ®

Cell State to
timestamp =1t + 1

Cell State from
timestamp =1- 1

Hidden state
output for
timestamp =t + 1

Hidden state input
(from

timestamp = t- 1) \|

Input Data;
Timestamp =t




Grounded language datasets

Dataset with simple sentences

The red cup is on the right

(b) GoLD

(c) Robot Data

Move the yellow block on top of the

This a hammer with a pink handle red block and place it on top of the

red tower in the back corner

47



Evaluation metric

‘ “the cup is on the right”

Imagined vision

g

@xaot J

RGP
(a)

®
(b)

B
(c)

X
J
J

N|eR 2%
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CSL TaSk: NOisy Supervision Output * The target is a noisy supervision

object 1

object 2-

vector that contains additional
concepts that are not presentin
the input sentence

EGIN the glass on the right is red END

1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
7 7 7 7
¢ ¢ o ©
{\@b / @QQ@ / {\@B{\ s @0@ /
ﬁp* Y ¢
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Results

Juven’s CSL Data GoL.D Data Robot Data
Model Valid Exact Valid Exact Exact
ESN-offline + One-Hot 46.60+£0.27 6330035 29491025 3038+045 42.30+0.14
ESN-offline + GloVe 44401031  61.00£037 4893028 5390024 57421023
ESN-offline + fine-tuned BERT 20.70+0.16  4020+0.18 44571026 47484041 43.00+0.11
ESN-offline + BERT 2450020 43.60+024 52.20+0.24 54784035 45.50+0.14

ESN-online FL + One-Hot 02.90+0.01 29.40+0.24 19.23+0.22 26.92+0.29 37.12+0.06
ESN-online FL + GloVe 06.00+0.07 40.20=0.31 20.27+0.26 32.56+0.24 38.09+0.14
ESN-online FL + fine-tuned BERT  02.52+0.01 26.00=0.18 17.45=0.11 28.89+0.19  34.20L0.06
ESN-online FL + BERT 02.72+0.01  28.50=0.20 27.2440.12  54.40+£0.21  35.34£0.10
ESN-online CL + One-Hot 18.64£0.13 3952031 21.69+046 32.48+048 57.10x0.55
ESN-online CL + GloVe 42.60£0.56  72.90=1.01 22.14:0.64 36.42+0.76  59.96x0.64
ESN-online CL + fine-tuned BERT  27.28+£0.19 54.00=0.34 1837040 34.04+0.28 58.86x0.20
ESN-online CL + BERT 32.860.20 60.88=041 2230046 52491044 60.17x£0.33
RandLSTM + One-Hot 100.0£0.0 100.00.0 7111161 75.34+1.82 7953151
RandLSTM + GloVe 100.0£0.0 100.00.0  8448+£2.32 84831210 88.88=1.04
RandLSTM + fine-tuned BERT 100.0£0.0 100.0x0.0  72.02£1.64 72.02+£2.03 §7.34=0.89
RandLSTM + BERT 100.0£0.0 100.00.0 7631145 80.17£1.67 87.91x=1.21
LSTM + One-Hot 99.64+0.01 99.82+0.01 4289056 48.14+£0.65 75.67L0.54
LSTM + GloVe 099.20+0.01 9999000 65.18=0.84 70.89+£091 86.57L0.87
LSTM + fine-tuned BERT 07.84+0.01 9890001 4418046 4726068 7247041
LSTM + BERT 08 0.01 4828+044 5240066 73.60+£045

) Cﬂmplex corpora

Larger vocabulary of objects (50 for Juven’s;

47 for GoLD, 11 for Robot Data)

ESN-online FL outperformed all the

models
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Parameters vs. Valid Error vs. Training Latency

Size (Parameters) v. Valid Error v. Latency

Valid Error
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N-Unline CL
LSTM-20
Claxe LSTM-40
59.6K
LSTM-80
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132.0K
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124.0K
BERT BERT
124.0K 85, TkpBne-Hot
151.8K
OnesHot
124.0K
Gloya One-Hot GloVe G;E_ :;t
12“& 124.0K 124.0K :
One- HKDt B BERT BERT
0 ﬂf 194.0K 134.5K C;';i-:;t
1290 BERT
2B1.7K
0 1000 2000 3000 4000 5000 6000 7000 BOOO 2000
Latency (secs)
GoLD (Large Data)

ESN-online FL model showcases lower
valid error using 124K parameters with a
model training latency of 64 seconds

ESN model has better computational
complexity in terms of latency and model
size.
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Partial Conclusions

Biologically plausible ESNs have a better trade-off on all three grounded language datasets with
better prediction error and low latency.

Fine-tuned BERT representations are more efficient at capturing complex relationship between
words.

ESNs with online learning models are making better predictions during the processing of a
sentence.
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Implications to Neuro-Al .

NLP -> Neurolingustics / \ Neurolingustics -> NLP

Disentangling representations
allowed us to distinguish syntactic
and semantic peaks across
language regions at different HRF
delays

Need LM with deeper understanding
of how humans relate characters,
discourse during long narratives

|
|
|
|
|
|
|
Need LM models to better evaluate :
meaningful explainable variance for |
individual participants :
Contextual representations allowed |
us to indicate that alignment with |
MEG depends on past context. Need better speech models for end- :

|

|

|

to-end language comprehension.
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Thank You

Questions?

LaBRI

universite
“*BORDEAUX
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