: IEEE
WCCI 2022

Multiple GraphHeat Networks f
Functional Brain Ma

July 20, 2022
IJCNN-2022

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

DDDDDDDDD

‘or Structural to

oping

Subba Reddy Oota?, Archi Yadav?, Arpita Dash?', Bapi Raju Surampudi?,

Avinash Sharma?

HIIT-Hyderabad, India



* The human brain’s structural topology is estimated from diffusion
tensor images (DTI) to derive the structural connectivity (SC) matrix
that summarizes the fiber connectivity density among the brain

I ntrOd UCtlon regions.

* Functional connectivity (FC) among these regions is estimated by
computing the correlation coefficient (usually Pearson) of the

respective time-varying resting-state functional magnetic resonance
imaging (rsfMRI) signals.
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Why SC-FC
mapping is
important?
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Three popular SC-FC mapping methods

* Whole Brain Modeling of SC-FC
* Graph-theoretic Modeling using Linear Models
* Deep Learning Models for SC-FC Mapping



Whole Brain Modeling of SC-FC

Predicting human resting-state functional connectivity
from structural connectivity
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Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The
question of how resting-state functional connectivity (FC) emerges from the brain’s anatomical connections has motivated several
experimental and computational studies to understand structure—function relationships. However, the mechanistic origin of resting
state is obscured by large-scale models’ complexity, and a close structure—function relation is still an open problem. Thus, a realistic but
simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently sum-

marizes the realistic dynamics of a detailed spiking and cnnducmnce—based synaptic large- scale network, in which cnnnecuwty is
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Graph-theoretic Modeling using Linear Models

Network diffusion accurately models the relationship between
structural and functional brain connectivity networks
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A challenging problem in cognitive neuroscience is to relate the structural connectivity (SC) to the

functional connectivity (FC) to better understand how large-scale network dynamics underlying human
cognition emerges from the relatively fixed SC architecture. Recent modeling attempts point to the
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Deep Learning Models for SC-FC Mapping

MAPPING BRAIN STRUCTURAL CONNECTIVITIES TO FUNCTIONAL NETWORKS VIA
GRAPH ENCODER-DECODER WITH INTERPRETABLE LATENT EMBEDDINGS

Yang Li', Rasoul Shafipour', Gonzalo Mateos' and Zhengwu Zhang*
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ABSTRACT

In this paper, the relationship between functional and structur:
networks is investigated by training a graph encoder-decod
tem to learn the mapping from brain structural connectivit
to functional connectivity (FC). Our work leverages a grap
volutional network (GCN) model in the encoder which int
both nodal attributes and the network topology information |
erate new graph representations in lower dimensions. Usin;
SC graphs as inputs, the novel GCN-based encoder-decod
tem manages to account for both direct and indirect interactic
tween brain regions to reconstruct the empirical FC netwo1
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Abstract. Understanding the mapping between structural and func-
tional brain connectivity is essential for understanding how cognitive pro-
cesses emerge from their morphological substrates. Many studies have in-
vestigated the problem from an eigendecomposition viewpoint, however,
few hawve taken a deep learning viewpoint, even less studies have been en-
gaged within the framework of graph neural networks (GNNs). As deep
learning has produced significant results in several fields, there has been
an increasing interest in applving neural networks to graph problems.
In this paper. we investigate the structural connectivity and functional
connectivity mapping within a deep learning (GNNs based framework,



* Graphs are a super general representation of data with

V\/ hy G 'a p h intrinsic structure.

. * We can represent brain graphs from functional medical
COﬂVOl Utlonal imaging, social networks, point clouds, and even molecules
Networks (GCNs)? and proteins.
B Structure = Graph Signal
Adjacency matrix (feature matrix)
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« GCNs determine neighborhood according to the hops
G h H t away from center node, i.e., in an order-style
[d p ed « Nodes in different colors
« GraphHeat determines neighborhood according to the

N etWO r kS similarity function by heat diffusion over graph

« Nodes in different circles
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Motivation

H: Heat Kernels
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D: Degree Matrix
SC: Structural Conntectivity Matrix
L: Laplacian Matrix

Surampudi et al. 2018, Li et al. 2019

Lasso Regression
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M-GHN Architecture
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A structural connectivity (SC)

Functional connectivity (FC)

HCP
Dataset

O

| @ 0jee o

e 100 subjects of SC — FC paris from
the HCP repository.

* Participants underwent resting-
state functional imaging (no task
condition) with their eyes closed. B SC MOdU"ESA

* The blood oxygen level dependent
(BOLD) time-series signal available
for each participant has 1200 time
points aggregated across 86
regions of interest (ROIs) as per
the AAL brain atlas.

Bullmore et al. 2009, Dosenbach et al. 2008



Experimental Setup

* Three experimental settings

 Randomly sampled 50 subjects (45 — training, 5 — validation), and remaining
subjects used for testing.

* Leave-one-out-crossvalidation
e 5-fold crossvalidation



Comparison of M-

GHN with
. Add noise to input SCs during
p revious m et h Od S training while correct SCs in testing
. Ehf Pearstc;]n correla(;cign . Mnd+:1 / Correlation
and predicted FC of test ‘Perturbation of Input SC (Training)> | 0.353
subjects. MEKL 0.691
GCN Encoder Decoder 0.732
Auln&:nc@ 0.561
— Macroscale SC-FC 0.501
Multi-layer perceptron as encoder- @ 0.715
decoder model. ﬂndmﬂ M-GHN 0.572
M-GHN 0.747
/

GNNs (GCN + GTN)
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Qualitative Analysis: Functional Connectivity matrices (FCs).

mean of the test FCs mean of the predicted FCs of each model
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Qualitative Analysis: Functional Connectivity Networks.

Each color indicates the nodes in that
particular community

GCN Encoder-Decoder



Discussion

* We adopt the representation of the graph signal in terms of graph heat kernel.

* The proposed M-GHN method is grounded in the theory of the reaction-diffusion process in the cognitive
domain.

* Proposed M-GHN model displays superior performance as compared to baseline models such as GCN
Encoder-Decoder, MKL model, and previous state-of-the-art methods.

 The M-GHN model is easily scalable to any brain parcellation (for example, Gordon Atlas with 333 x 333,
Glasser Atlas with 360 x 360 parcellations).

* Also, the MGHN model requires learning of 51,772 parameters (7 scales: 7x7396) that is comparatively lower
than learning 118,336 parameters in the MKL framework (16 scales: 16x7396).

* Further, the proposed framework is inherently scalable to more diffusion scales, more hidden layers in the
GHNs, and can potentially be used for transfer learning on other datasets.
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