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Introduction
• The human brain’s structural topology is estimated from diffusion 

tensor images (DTI) to derive the structural connectivity (SC) matrix 
that summarizes the fiber connectivity density among the brain 
regions.

• Functional connectivity (FC) among these regions is estimated by 
computing the correlation coefficient (usually Pearson) of the 
respective time-varying resting-state functional magnetic resonance 
imaging (rsfMRI) signals.

Hagmann et al. 2007, Milano et al. 2019



Why SC-FC 
mapping is 
important?

• We can identify the biomarkers 
that underlie any deviation from 
the expected FC based on the SC 
in various diseases such as Autism 
Spectrum Disorder (ASD), 
Dementia, etc,.

• Helpful to characterize the 
functional recovery patterns 
resulting from therapy comparing 
the FC observed with the 
predicted FC based on healthy 
structural topology.

Synder et al. 2018



Three popular SC-FC mapping methods

• Whole Brain Modeling of SC-FC

• Graph-theoretic Modeling using Linear Models

• Deep Learning Models for SC-FC Mapping



Whole Brain Modeling of SC-FC

Honey et al. 2009, Deco et al. 2013



Graph-theoretic Modeling using Linear Models

Abdelnour et al. 2016, Surampudi et al. 2018



Deep Learning Models for SC-FC Mapping

Li et al. 2019, Ji et al. 2021



Why Graph 
Convolutional 
Networks (GCNs)?

• Graphs are a super general representation of data with 
intrinsic structure.

• We can represent brain graphs from functional medical 
imaging, social networks, point clouds, and even molecules 
and proteins.

Kipf et al. 2016



GraphHeat 
Networks

• GCNs determine neighborhood according to the hops 
away from center node, i.e., in an order-style 

• Nodes in different colors

• GraphHeat determines neighborhood according to the 
similarity function by heat diffusion over graph

• Nodes in different circles

Heat Kernel Matrix



Motivation

D: Degree Matrix
SC: Structural Conntectivity Matrix

L: Laplacian Matrix

H: Heat Kernels

Scale Values

Lasso Regression

Surampudi et al. 2018, Li et al. 2019

A: Structual Matrix
FC: Functional Conntectivity Matrix

Z: Predicted FC



M-GHN Architecture
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HCP 
Dataset

• 100 subjects of SC – FC paris from 
the HCP repository.

• Participants underwent resting-
state functional imaging (no task 
condition) with their eyes closed.

• The blood oxygen level dependent 
(BOLD) time-series signal available 
for each participant has 1200 time 
points aggregated across 86 
regions of interest (ROIs) as per 
the AAL brain atlas.

Bullmore et al. 2009, Dosenbach et al. 2008



Experimental Setup

• Three experimental settings
• Randomly sampled 50 subjects (45 – training, 5 – validation), and remaining 

subjects used for testing.

• Leave-one-out-crossvalidation

• 5-fold crossvalidation



Comparison of M-
GHN with 
previous methods

• The Pearson correlation 
between the ground-truth FC 
and predicted FC of test 
subjects.

Add noise to input SCs during 
training while correct SCs in testing

Multi-layer perceptron as encoder-
decoder model.

GNNs (GCN + GTN)



Results: Randomly sampled experiment



Results: LOOCV



mean of the predicted FCs of each modelmean of the test FCs

Qualitative Analysis: Functional Connectivity matrices (FCs).



Qualitative Analysis: Functional Connectivity Networks.

Each color indicates the nodes in that 
particular community



Discussion

• We adopt the representation of the graph signal in terms of graph heat kernel.

• The proposed M-GHN method is grounded in the theory of the reaction-diffusion process in the cognitive 
domain.

• Proposed M-GHN model displays superior performance as compared to baseline models such as GCN 
Encoder-Decoder, MKL model, and previous state-of-the-art methods.

• The M-GHN model is easily scalable to any brain parcellation (for example, Gordon Atlas with 333 × 333, 
Glasser Atlas with 360 × 360 parcellations).

• Also, the MGHN model requires learning of 51,772 parameters (7 scales: 7x7396) that is comparatively lower 
than learning 118,336 parameters in the MKL framework (16 scales: 16x7396).

• Further, the proposed framework is inherently scalable to more diffusion scales, more hidden layers in the 
GHNs, and can potentially be used for transfer learning on other datasets.
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